CHANGES OF COMPRESSIVE STRENGTH AND MICROHARDNESS OF COMPOSITE RESIN, GIOMER AND COMPOMER AFTER THERMOCYCLING TREATMENT

복합레진, 자이오머, 컴포머의 열순환 후 압축강도와 미세경도의 변화

  • Yoon, Mi (Department of Pediatric Dentistry, Dental College, Dankook University) ;
  • Kim, Jong-Soo (Department of Pediatric Dentistry, Dental College, Dankook University) ;
  • Yoo, Seung-Hoon (Department of Pediatric Dentistry, Dental College, Dankook University)
  • 윤미 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 유승훈 (단국대학교 치과대학 소아치과학교실)
  • Received : 2010.08.30
  • Accepted : 2010.11.18
  • Published : 2010.11.30

Abstract

Giomer is a recently developed light-cured resin-based material. This study compared compressive strength and microhardness of composite resin, giomer and compomer after 5000 times of thermocycling at $5^{\circ}C$ and $55^{\circ}C$. The following results were obtained. 1. Composite resin resulted in the highest compressive strengths both before and after thermocycling, followed by giomer and compomer. There were statistically significant differences between composite resin and giomer/compomer (p<0.05), but no statistically significant differences between giomer and compomer. 2. Both before and after thermocycling, microhardness values appeared in the order of composite resin, giomer and compomer with statistically significant differences in microhardness of composite resin, giomer and compomer (p<0.05). 3. After thermocycling, microhardness of composite resin, giomer and compomer decreased with a statistically significant difference (p<0.05). In conclusion, giomer demonstrates higher microhardness than compomer, but lower compressive strength and microhardness than composite resin. In addition, the decrease in microhardness and compressive strength after thermocycling proves the necessity for a thorough understanding in mechanical properties of restoration materials prior to their clinical application.

자이오머는 불소를 유리하는 최근 개발된 광중합 레진 제재이다. 본 실험에서는 복합레진, 자이오머, 컴포머를 이용하여 $5^{\circ}C$$55^{\circ}C$에서 5000번 열순환 후 압축강도와 미세경도 변화를 비교 평가하였다. 1. 열순환 전.후 모두 압축강도는 복합레진이 가장 높았으며, 자이오머, 컴포머 순으로 낮아졌다. 복합레진은 자이오머, 컴포머와 통계학적으로 유의차를 보였고(p<0.05), 자이오머와 컴포머 사이에는 유의차가 없었다. 2. 열순환 전.후 미세경도는 복합 레진, 자이오머, 컴포머 순으로 낮아졌으며, 각각 통계학적으로 유의차를 보였다(p<0.05). 3. 복합레진, 자이오머, 컴포머는 열순환 후 통계학적으로 유의하게 미세경도가 감소하였다(p<0.05). 이상의 결과를 종합해보면, 자이오머는 컴포머보다 높은 미세경도를 보이지만, 복합레진보다 낮은 압축강도와 미세경도를 보인다. 열순환 후 미세경도가 감소하므로 임상적 사용시 물리적 성질에 대한 충분한 고찰이 필요할 것으로 사료된다.

Keywords

References

  1. 정내정 : 치과용 콤포짓트 레진의 수분 흡수에 따른 압축강도와 굴곡강도의 변화에 관한 연구. 대한소아치과학회지, 28:146-153, 2001.
  2. Mjor IA : Frequency of secondary caries at various anatomical locations. Oper Dent, 10:88-92, 1985.
  3. Varpio M : Clinical aspects of restorative treatment in the primary dentition. Swed Dent J, 96:36-40, 1993.
  4. Eliades G, Kakaboura A, Palaghias G : Acid-base reaction and fluoride release profile in visible lightcured polyacid-modified composite restoratives (compomers). Dent Mater, 14:57-63, 1998. https://doi.org/10.1016/S0109-5641(98)00010-4
  5. Abate PF, Bertacchinni SM, Polack MA, et al. : Adhesion of a compomer to dental structures. Quint Int, 28:509-512, 1997.
  6. Atter N, Onen A : Fluoride release and uptake characteristics of aesthetic restorative materials. JI of Oral Rehabilitation, 29:791-798, 2002. https://doi.org/10.1046/j.1365-2842.2002.00902.x
  7. Brackett WW, Gunnin TD, Gilpatrick RO, et al. : Microleakage of class V compomer and light cured ionomer restorations. J Prosthet Dent, 79:261-263, 1998. https://doi.org/10.1016/S0022-3913(98)70234-3
  8. Yap AU, Chung SM, Chow WS, et al. : Fracture resistance of compomer and composit restoratives Oper Dent, 29:29-34, 2004.
  9. Roberts TA, Miyai K, Ikemura K, et al. : Fluoride ion sustained release pre-formed glass ionomer filler and dental compositions containing the same. US Patent No. 5,883,153, 1999.
  10. Itota T, Carrick TE, Yoshiyama M, et al. : Fluoride release and recharge in giomer, compomer and resin composit. Dental Materials, 20:789-798, 2004. https://doi.org/10.1016/j.dental.2003.11.009
  11. Chitnis D, Dunn WJ, Gonzales DA : Comparison of in-vitro bond strengths between resin modified glass ionomer, polyacid-modified composite resin, and giomer adhesive systems. Am J Orthod Dentofacial Orthop, 129:330.e11-16, 2006. https://doi.org/10.1016/j.ajodo.2005.11.011
  12. Powers JM, Fan PL, Marcotte M : In vitro accelearted aging of composite and a sealant. J Dent Res, 60:1672-1677, 1981. https://doi.org/10.1177/00220345810600090701
  13. Lee SY, Lee JY, Bae TS, et al. : The effect of thermocycling on the bond strength of composit bond to dentin surface. J Korean Res Soc Dent Mater, 20:149-164, 1993.
  14. Bae TS, Kim TJ, Kim HS : Effect of immersion in water and thermal cycling on the mechanical properties of light-cured composit resin. J KOSOMBE, 17:327-335, 1996.
  15. Indrani DJ, Cook WD, Televantos F, et al. : Fracture toughness of water-aged composite restorative materials. Dent Mater, 11:201-207, 1995. https://doi.org/10.1016/0109-5641(95)80019-0
  16. 김영광, 김종수, 유승훈 : 스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교. 대한소아치과학회지, 31:516-526, 2004.
  17. Baek SH, Chae MS, Lee JH, et al. : In vivo evaluation of four posterior composites. Dent Mater, 2:106-113, 1998.
  18. Ernst CP, Euler T, Willershausen : Approximal temperature increase and decrease during thermocycling in vivo. J Dent Res, 76:231, 1997.
  19. Wendt JS, Mclnnes PM, Dickinson GL : The effect of thermocycling in microleakage analysis. Dent Mater, 8:181-184, 1992. https://doi.org/10.1016/0109-5641(92)90079-R
  20. Choi JY, Choi WH, Bae TS, et al. : An Evaluation of Wear Characteristics of Thermocycled Restorative Composites. 치과기재학회지, 29:87-98, 2002.
  21. Gale MS, Darvell BW : Thermal-cycling procedures for laboratory testing of dental restorations. J Dent, 27:88-99, 1999.
  22. Adrian U, Jin Yap, Xiaoyan Wang, et al. : Comparative hardness and modulus of tooth-colored restoratives: A depth-sensing microindentation study. 25:2179-2185, 2004. https://doi.org/10.1016/j.biomaterials.2003.09.003
  23. Roulet JF, Walti C : Influence of oral fluid on composite resin and glass ionomercement. J Prosthet Dent, 52:182-189, 1984. https://doi.org/10.1016/0022-3913(84)90092-1
  24. Braem M, Finger W, Van Doren VE, et al. : Mechanical properties and filler fraction of dental composites. Dent Mater, 5:346-348, 1989. https://doi.org/10.1016/0109-5641(89)90128-0
  25. Yamamoto M, Takahashi : Tensile fatigue strength of light cure composite resins for posterior teeth. Dent Mater, 14:175-184, 1995. https://doi.org/10.4012/dmj.14.175
  26. Bastoli C, Romano G, Migliaresi C : Water sorption and mechanical properties of dental composites. Biomat, 11:219-223, 1990. https://doi.org/10.1016/0142-9612(90)90159-N
  27. Venz S, Dickens B : NIR-spectroscopic water sorption characteristics of dental resin and composite. J Biomed Mater Res, 25:1231-1248, 1991. https://doi.org/10.1002/jbm.820251005
  28. Calais JG, Soderholm KJ : Influence of filler type and water exposure on flexural strength of experimental composite resins. J Dent Res, 67:836-840, 1988. https://doi.org/10.1177/00220345880670050801
  29. Asmussen E, Peutzfeldt A : Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater, 14:44-51, 1998. https://doi.org/10.1016/S0109-5641(98)00008-6
  30. Siederidou I, Tserki V, Papanastasiou G : Study of water sorption, solubility and modulud of elasticity of light-curesd dimethacrylate-based dental resins. Biomaterials, 24:655-665, 2003. https://doi.org/10.1016/S0142-9612(02)00380-0
  31. Ikemura K, Tay FR, Endo T, et al. : A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesive comprising new pre-reacted glass ionomer(PRG) fillers. Dent Mater J, 27:315-339, 2008. https://doi.org/10.4012/dmj.27.315
  32. Itota T, Okamoto M, Sato K, et al. : Release and recharge of fluoride by restorative materials. Dent Mater J, 18:347-353, 1999. https://doi.org/10.4012/dmj.18.347
  33. Han L, Cv E, Li M, et al. : Effect of fluoride mouth rinse on fluoride releasing and recharging from aesthetic dental materials. Dent Mater J, 21:285-295, 2002. https://doi.org/10.4012/dmj.21.285
  34. Tay FR, Pashley EL, Huang C, et al. : The glassionomer phase in resin based restorative materials. J Dent Res, 80:1808-1812, 2001. https://doi.org/10.1177/00220345010800090701
  35. Ikemura K, Tay FR, Kouro Y, et al. Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater, 19:137-146, 2003. https://doi.org/10.1016/S0109-5641(02)00022-2
  36. Toshiyuki I, Omar T. Al-Naimi, Thomas EC, et al. : Fluoride release from aged resin composites containing fluoridated glass filler. Dent Mater, 26:1033-1038, 2004.