DOI QR코드

DOI QR Code

THE NUMBERS THAT CAN BE REPRESENTED BY A SPECIAL CUBIC POLYNOMIAL

  • Published : 2010.04.30

Abstract

We will show that if d is a cubefree integer and n is an integer, then with some suitable conditions, there are no primes p and a positive integer m such that d is a cubic residue (mod p), $3\;{\nmid}\;m$, p || n if and only if there are integers x, y, z such that $$x^3\;+\;dy^3\;+\;d^2z^3\;-\;3dxyz\;=\;n$$.

Keywords

References

  1. T. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.- London, 1974.
  2. F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, Berlin, 2000.
  3. D. A. Marcus, Number Fields, Springer-Verlag, New York-Heidelberg, 1977.
  4. I. Niven, H. S. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, Inc., New York, 1991.