THE NUMBERS THAT CAN BE REPRESENTED BY A SPECIAL CUBIC POLYNOMIAL

Doo Sung Park, Seung Jin Bang, and Jung Oh Choi

ABSTRACT. We will show that if d is a cubefree integer and n is an integer, then with some suitable conditions, there are no primes p and a positive integer m such that

d is a cubic residue (mod $p),\,3\nmid m,\,p\parallel n$

if and only if there are integers x, y, z such that

$$x^3 + dy^3 + d^2z^3 - 3dxyz = n.$$

1. Introduction

The numbers that can be represented by a quadratic polynomial $x^2 + y^2$ is well-known. For an integer n, there are integers x, y satisfying $x^2 + y^2 = n$ if and only if there are no primes p and odd positive integer m such that $p \equiv 3 \pmod{4}$ and $p^m \parallel n$ [4, p. 164]. In this paper, we will study the numbers that can be represented by the cubic polynomial

$$x^3 + dy^3 + d^2z^3 - 3dxyz$$
.

2. Preliminaries

For a prime p and an integer n such that gcd(n, p) = 1, let n be a cubic residue (mod p) if $p \equiv 1 \pmod{3}$ and there are no integer solutions of

$$x^3 \equiv n \pmod{p}$$
.

For a cubefree integer d, let R_d be the set of all algebraic integers in $\mathbb{Q}(\sqrt[3]{d})$ [3, p. 38]. For $\alpha \in R_d$ where $x, y, z \in \mathbb{Q}$ and

$$\alpha = x + y\sqrt[3]{d} + z\sqrt[3]{d^2},$$

let

$$N(\alpha) = x^3 + dy^3 + d^2z^3 - 3dxyz, \ \overline{\alpha} = (x^2 - dyz) + (dz^2 - xy)\sqrt[3]{d} + (y^2 - zx)\sqrt[3]{d^2}.$$

Received June 10, 2009.

 $2000\ Mathematics\ Subject\ Classification.\ 11D25.$

Key words and phrases. number theory.

©2010 The Korean Mathematical Society

Then for any $\alpha, \beta \in R_d$, $N(\alpha)N(\beta) = N(\alpha\beta)$, $N(\alpha) \in \mathbb{Z}$, $N(\alpha) = 0$ if and only if $\alpha = 0$, and $N(\alpha) = 1$ if and only if α is a unit in R_d [3, pp. 21–22]. Also, the following formulas

$$\alpha \overline{\alpha} = N(\alpha), \ N(\overline{\alpha}) = N(\alpha)^2, \ \overline{\overline{\alpha}} = N(\alpha)\alpha, \ \overline{\alpha \beta} = \overline{\alpha} \overline{\beta}, \ \overline{\left(\frac{\alpha}{\beta}\right)} = \overline{\frac{\overline{\alpha}}{\overline{\beta}}}$$

hold by explicit calculations. For a prime p and a positive integer m, let \mathbb{F}_{p^m} be the finite field with order p^m [1, p. 279]. For an integral domain R, let R be a unique factorization domain if the factorization of elements in R exists and is unique up to units [1, p. 137].

3. Results and proofs

Lemma 3.1. Assume that d is a cubefree integer, p is a prime where $p \equiv 1 \pmod{3}$, and d is not a cubic residue \pmod{p} . If integers x, y, z are a solution of

$$x^3 + dy^3 + d^2z^3 - 3dxyz \equiv 0 \pmod{p},$$

then $x \equiv y \equiv z \equiv 0 \pmod{p}$.

Proof. A polynomial t^3-d is irreducible in \mathbb{F}_p , so \mathbb{F}_{p^3} is a splitting field over \mathbb{F}_p of the polynomial t^3-d [1, p. 280]. Consider \mathbb{F}_{p^3} as $\mathbb{F}_p[t]/(t^3-d)$ [1, p. 234]. Also, let $\alpha=x+yt+zt^2\in\mathbb{F}_{p^3}$. Then in \mathbb{F}_{p^3} ,

$$0 = x^3 + dy^3 + d^2z^3 - 3dxyz = N(\alpha) = \alpha \overline{\alpha}.$$

If $\alpha=0$, then x=y=z=0 in \mathbb{F}_p . If $\overline{\alpha}=0$, then $x^2=dyz$, $dz^2=xy$, $y^2=zx$ in \mathbb{F}_p . If x=0 in \mathbb{F}_p , then y=z=0 in \mathbb{F}_p . If $x\neq 0$ in \mathbb{F}_p , then in \mathbb{F}_p ,

$$x^4 = d^2y^2z^2 = dxy^3,$$

so there is an integer m such that $m^3 = d$ in \mathbb{F}_p . A contradiction.

Theorem 3.2. Let d be a cubefree integer. Consider an integer n such that there is an integral solution of

$$x^3 + dy^3 + d^2z^3 - 3dxyz = n.$$

Then $n = \mu^3 \nu$ for some integer μ and a cubefree integer ν such that for any prime factor p of ν where $p \equiv 1 \pmod{3}$, d is a cubic residue \pmod{p} .

Proof. If p is a prime factor of n such that $p \equiv 1 \pmod{3}$ and d is not a cubic residue (mod p), then by the previous lemma, $x \equiv y \equiv z \equiv 0$. Then $p^3 \mid n$, so

$$\left(\frac{x}{p}\right)^3 + d\left(\frac{y}{p}\right)^3 + d^2\left(\frac{z}{p}\right)^3 = \frac{n}{p^3}.$$

By iterating this argument, we see that for some positive integer $m, p^{3m} \parallel n$. It means this theorem.

Lemma 3.3. Let p be a prime and t an integer such that gcd(t, p) = 1. Then there are integers x, y, z such that

$$|x|, |y|, |z| < \sqrt[3]{p}, (x, y, z) \neq (0, 0, 0), x + ty + t^2 z \equiv 0 \pmod{p}.$$

Proof. The number of all pairs (x,y,z) such that $0 < x,y,z < \sqrt[3]{p}+1$ is bigger than p, so by the pigeonhole principle, for some integers $0 < x_1,x_2,y_1,y_2,z_1,z_2 < \sqrt[3]{p+1}$ such that $(x_1,y_1,z_1) \neq (x_2,y_2,z_2)$,

$$x_1 + ty_1 + t^2 z_1 \equiv x_2 + ty_2 + t^2 z_2 \pmod{p}$$
.

Let $x = x_1 - x_2$, $y = y_1 - y_2$, $z = z_1 - z_2$. Then x, y, z satisfy the conditions. \square

Theorem 3.4. Let d be a cubefree integer. Assume that R_d is a unique factorization domain and for any prime $p < 1 + 4d + d^2$ except the cases when $d \equiv 1 \pmod{p}$ and d is not a cubic residue \pmod{p} or when p divides d, there is an integral solution of

$$x^3 + dy^3 + d^2z^3 - 3dxyz = p.$$

Then for any integer $n = \mu^3 \nu$ where μ is an integer and ν is a cubefree integer such that d is a cubic residue (mod p) for any prime factor p of ν where $p \equiv 1 \pmod{3}$, there is an integral solution of

$$x^3 + dy^3 + d^2z^3 - 3dxyz = n.$$

Proof. We will first prove this theorem when n is a prime $p \ge 1 + 4d + d^2$. If $p \equiv 1 \pmod{3}$, then d is a cubic residue. Also, p > 2, 3, d. If $p \equiv 5 \pmod{6}$, then \mathbb{F}_p^* is a cyclic group of order p-1 [1, p. 279], so there is an integer t such that $t^3 \equiv d \pmod{p}$ because $\gcd(p-1,3) = 1$. Therefore, in any cases, we can choose an integer such that $t^3 \equiv d \pmod{p}$. Then because $\gcd(t,p) = 1$, by the previous lemma, we can choose integers x_0, y_0, z_0 such that

$$|x_0|, |y_0|, |z_0| < \sqrt[3]{p}, (x_0, y_0, z_0) \neq (0, 0, 0), x_0 + ty_0 + t^2 z_0 \equiv 0 \pmod{p}.$$

Then $x_0^3 + dy_0^3 + d^2z_0^3 - 3dx_0y_0z_0 = kp$ for some integer k. Because $N(\alpha) \neq 0$

$$\alpha = x_0 + y_0 \sqrt[3]{d} + z_0 \sqrt[3]{d^2}$$

so k is not zero. Also, $k < 1 + 4d + d^2$. Therefore, gcd(k, p) = 1. Because R_d is a unique factorization domain, there are $\beta, \gamma \in R_d$ such that

$$\alpha = \beta \gamma$$
, $\gcd(\gamma, p) \neq 1$, $\gcd(\gamma, k) = 1$.

Then $N(\gamma)$ divides $N(p)=p^3$. If p^2 divides $N(\gamma)$, then p^2 divides $N(\alpha)=kp$. A contradiction. Therefore, $N(\gamma)$ divides p. Also, γ is not a unit, so $N(\gamma)\neq 1$. Therefore, $N(\gamma)=\pm p$, so we can choose integers x,y,z such that

$$N(x + y\sqrt[3]{d} + z\sqrt[3]{d^2}) = p$$
,

and then $x^{3} + dy^{3} + d^{2}z^{3} - 3dxyz = p$.

Also, for any $\alpha, \beta \in R_d$, $N(\alpha\beta) = N(\alpha)N(\beta)$, and for any prime $p, N(p) = p^3$. By multiplying elements in R_d what we have earned, for an integer n satisfying the conditions, there are integers x, y, z such that

$$N(x + y\sqrt[3]{d} + z\sqrt[3]{d^2}) = n,$$

and then $x^{3} + dy^{3} + d^{2}z^{3} - 3dxyz = n$.

By combining Theorems 3.2 and 3.4, we get the following result.

Corollary 3.5. Let n be an integer. Under the assumptions in Theorem 3.4, there is an integral solution of

$$x^3 + dy^3 + d^2z^3 - 3dxyz = n$$

if and only if there are an integer μ and a cubefree integer ν such that $n = \mu^3 \nu$ and d is a cubic residue (mod p) for any prime factor of p where $p \equiv 1 \pmod{3}$.

Consider the case of d=2. Then R_2 is a unique factorization domain [3, p. 149], so it is easy to see that the assumptions of Theorem 3.2 is satisfied. Also, by the cubic reciprocity, for any prime p such that $p \equiv 1 \pmod{3}$, 2 is a cubic residue (mod p) if and only if there are integers a, b such that $p = a^2 + 27b^2$ [2, p. 210]. Therefore, we get the following easy application.

Corollary 3.6. Let p be a prime. Then there is an integral solution of

$$x^3 + 2y^3 + 4z^3 - 6dxyz = p$$

if and only if $p \equiv 0, 2 \pmod{3}$ or $p = a^2 + 27b^2$ for some integers a, b.

Remark 3.7. We can consider other cases by same ways with some calculations and the cubic reciprocity. For the cubic reciprocity, see [2, pp. 209–234].

References

- T. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1974.
- [2] F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, Berlin, 2000.
- [3] D. A. Marcus, Number Fields, Springer-Verlag, New York-Heidelberg, 1977.
- [4] I. Niven, H. S. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, Inc., New York, 1991.

Doo Sung Park

Department of Mathematics

California Institute of Technology

California 91125, USA

E-mail address: parkd@caltech.edu

SEUNG JIN BANG

DEPARTMENT OF MATHEMATICS

AJOU UNIVERSITY

Suwon 443-749, Korea

E-mail address: emath@naver.com

JUNG OH CHOI SAETBYEOL MIDDLE SCHOOL GYEONGGI-DO 463-020, KOREA

E-mail address: setfree1@hanmail.net