THE NUMBERS THAT CAN BE REPRESENTED BY A SPECIAL CUBIC POLYNOMIAL

Doo Sung Park, Seung Jin Bang, and Jung Oh Choi

Abstract. We will show that if d is a cubefree integer and n is an integer, then with some suitable conditions, there are no primes p and a positive integer m such that

$$
d \text { is a cubic residue }(\bmod p), 3 \nmid m, p \| n
$$

if and only if there are integers x, y, z such that

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=n
$$

1. Introduction

The numbers that can be represented by a quadratic polynomial $x^{2}+y^{2}$ is well-known. For an integer n, there are integers x, y satisfying $x^{2}+y^{2}=n$ if and only if there are no primes p and odd positive integer m such that $p \equiv 3$ $(\bmod 4)$ and $p^{m} \| n[4, \operatorname{p.} 164]$. In this paper, we will study the numbers that can be represented by the cubic polynomial

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z
$$

2. Preliminaries

For a prime p and an integer n such that $\operatorname{gcd}(n, p)=1$, let n be a cubic residue $(\bmod p)$ if $p \equiv 1(\bmod 3)$ and there are no integer solutions of

$$
x^{3} \equiv n \quad(\bmod p)
$$

For a cubefree integer d, let R_{d} be the set of all algebraic integers in $\mathbb{Q}(\sqrt[3]{d})[3$, p. 38]. For $\alpha \in R_{d}$ where $x, y, z \in \mathbb{Q}$ and

$$
\alpha=x+y \sqrt[3]{d}+z \sqrt[3]{d^{2}}
$$

let
$N(\alpha)=x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z, \bar{\alpha}=\left(x^{2}-d y z\right)+\left(d z^{2}-x y\right) \sqrt[3]{d}+\left(y^{2}-z x\right) \sqrt[3]{d^{2}}$.

Key words and phrases. number theory.

Then for any $\alpha, \beta \in R_{d}, N(\alpha) N(\beta)=N(\alpha \beta), N(\alpha) \in \mathbb{Z}, N(\alpha)=0$ if and only if $\alpha=0$, and $N(\alpha)=1$ if and only if α is a unit in $R_{d}[3, \mathrm{pp} .21-22]$. Also, the following formulas

$$
\alpha \bar{\alpha}=N(\alpha), N(\bar{\alpha})=N(\alpha)^{2}, \overline{\bar{\alpha}}=N(\alpha) \alpha, \overline{\alpha \beta}=\bar{\alpha} \bar{\beta}, \overline{\left(\frac{\alpha}{\beta}\right)}=\frac{\bar{\alpha}}{\bar{\beta}}
$$

hold by explicit calculations. For a prime p and a positive integer m, let $\mathbb{F}_{p^{m}}$ be the finite field with order $p^{m}[1, \mathrm{p} .279]$. For an integral domain R, let R be a unique factorization domain if the factorization of elements in R exists and is unique up to units [1, p. 137].

3. Results and proofs

Lemma 3.1. Assume that d is a cubefree integer, p is a prime where $p \equiv 1$ $(\bmod 3)$, and d is not a cubic residue $(\bmod p)$. If integers x, y, z are a solution of

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z \equiv 0 \quad(\bmod p)
$$

then $x \equiv y \equiv z \equiv 0(\bmod p)$.
Proof. A polynomial $t^{3}-d$ is irreducible in \mathbb{F}_{p}, so $\mathbb{F}_{p^{3}}$ is a splitting field over \mathbb{F}_{p} of the polynomial $t^{3}-d[1, \mathrm{p} .280]$. Consider $\mathbb{F}_{p^{3}}$ as $\mathbb{F}_{p}[t] /\left(t^{3}-d\right)[1, \mathrm{p}$. 234]. Also, let $\alpha=x+y t+z t^{2} \in \mathbb{F}_{p^{3}}$. Then in $\mathbb{F}_{p^{3}}$,

$$
0=x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=N(\alpha)=\alpha \bar{\alpha} .
$$

If $\alpha=0$, then $x=y=z=0$ in \mathbb{F}_{p}. If $\bar{\alpha}=0$, then $x^{2}=d y z, d z^{2}=x y, y^{2}=z x$ in \mathbb{F}_{p}. If $x=0$ in \mathbb{F}_{p}, then $y=z=0$ in \mathbb{F}_{p}. If $x \neq 0$ in \mathbb{F}_{p}, then in \mathbb{F}_{p},

$$
x^{4}=d^{2} y^{2} z^{2}=d x y^{3},
$$

so there is an integer m such that $m^{3}=d$ in \mathbb{F}_{p}. A contradiction.
Theorem 3.2. Let d be a cubefree integer. Consider an integer n such that there is an integral solution of

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=n
$$

Then $n=\mu^{3} \nu$ for some integer μ and a cubefree integer ν such that for any prime factor p of ν where $p \equiv 1(\bmod 3)$, d is a cubic residue $(\bmod p)$.

Proof. If p is a prime factor of n such that $p \equiv 1(\bmod 3)$ and d is not a cubic residue $(\bmod p)$, then by the previous lemma, $x \equiv y \equiv z \equiv 0$. Then $p^{3} \mid n$, so

$$
\left(\frac{x}{p}\right)^{3}+d\left(\frac{y}{p}\right)^{3}+d^{2}\left(\frac{z}{p}\right)^{3}=\frac{n}{p^{3}}
$$

By iterating this argument, we see that for some positive integer $m, p^{3 m} \| n$. It means this theorem.

Lemma 3.3. Let p be a prime and t an integer such that $\operatorname{gcd}(t, p)=1$. Then there are integers x, y, z such that

$$
|x|,|y|,|z|<\sqrt[3]{p},(x, y, z) \neq(0,0,0), x+t y+t^{2} z \equiv 0 \quad(\bmod p)
$$

Proof. The number of all pairs (x, y, z) such that $0<x, y, z<\sqrt[3]{p}+1$ is bigger than p, so by the pigeonhole principle, for some integers $0<x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$ $<\sqrt[3]{p+1}$ such that $\left(x_{1}, y_{1}, z_{1}\right) \neq\left(x_{2}, y_{2}, z_{2}\right)$,

$$
x_{1}+t y_{1}+t^{2} z_{1} \equiv x_{2}+t y_{2}+t^{2} z_{2} \quad(\bmod p) .
$$

Let $x=x_{1}-x_{2}, y=y_{1}-y_{2}, z=z_{1}-z_{2}$. Then x, y, z satisfy the conditions.
Theorem 3.4. Let d be a cubefree integer. Assume that R_{d} is a unique factorization domain and for any prime $p<1+4 d+d^{2}$ except the cases when $d \equiv 1$ $(\bmod p)$ and d is not a cubic residue $(\bmod p)$ or when p divides d, there is an integral solution of

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=p
$$

Then for any integer $n=\mu^{3} \nu$ where μ is an integer and ν is a cubefree integer such that d is a cubic residue $(\bmod p)$ for any prime factor p of ν where $p \equiv 1$ $(\bmod 3)$, there is an integral solution of

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=n
$$

Proof. We will first prove this theorem when n is a prime $p \geq 1+4 d+d^{2}$. If $p \equiv 1(\bmod 3)$, then d is a cubic residue. Also, $p>2,3, d$. If $p \equiv 5(\bmod 6)$, then \mathbb{F}_{p}^{*} is a cyclic group of order $p-1[1, \mathrm{p} .279]$, so there is an integer t such that $t^{3} \equiv d(\bmod p)$ because $\operatorname{gcd}(p-1,3)=1$. Therefore, in any cases, we can choose an integer such that $t^{3} \equiv d(\bmod p)$. Then because $\operatorname{gcd}(t, p)=1$, by the previous lemma, we can choose integers x_{0}, y_{0}, z_{0} such that

$$
\left|x_{0}\right|,\left|y_{0}\right|,\left|z_{0}\right|<\sqrt[3]{p},\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,0), x_{0}+t y_{0}+t^{2} z_{0} \equiv 0 \quad(\bmod p) .
$$

Then $x_{0}^{3}+d y_{0}^{3}+d^{2} z_{0}^{3}-3 d x_{0} y_{0} z_{0}=k p$ for some integer k. Because $N(\alpha) \neq 0$ where

$$
\alpha=x_{0}+y_{0} \sqrt[3]{d}+z_{0} \sqrt[3]{d^{2}}
$$

so k is not zero. Also, $k<1+4 d+d^{2}$. Therefore, $\operatorname{gcd}(k, p)=1$. Because R_{d} is a unique factorization domain, there are $\beta, \gamma \in R_{d}$ such that

$$
\alpha=\beta \gamma, \operatorname{gcd}(\gamma, p) \neq 1, \operatorname{gcd}(\gamma, k)=1
$$

Then $N(\gamma)$ divides $N(p)=p^{3}$. If p^{2} divides $N(\gamma)$, then p^{2} divides $N(\alpha)=k p$. A contradiction. Therefore, $N(\gamma)$ divides p. Also, γ is not a unit, so $N(\gamma) \neq 1$. Therefore, $N(\gamma)= \pm p$, so we can choose integers x, y, z such that

$$
N\left(x+y \sqrt[3]{d}+z \sqrt[3]{d^{2}}\right)=p
$$

and then $x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=p$.

Also, for any $\alpha, \beta \in R_{d}, N(\alpha \beta)=N(\alpha) N(\beta)$, and for any prime $p, N(p)=$ p^{3}. By multiplying elements in R_{d} what we have earned, for an integer n satisfying the conditions, there are integers x, y, z such that

$$
N\left(x+y \sqrt[3]{d}+z \sqrt[3]{d^{2}}\right)=n
$$

and then $x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=n$.
By combining Theorems 3.2 and 3.4, we get the following result.
Corollary 3.5. Let n be an integer. Under the assumptions in Theorem 3.4, there is an integral solution of

$$
x^{3}+d y^{3}+d^{2} z^{3}-3 d x y z=n
$$

if and only if there are an integer μ and a cubefree integer ν such that $n=$ $\mu^{3} \nu$ and d is a cubic residue $(\bmod p)$ for any prime factor of p where $p \equiv 1$ $(\bmod 3)$.

Consider the case of $d=2$. Then R_{2} is a unique factorization domain [3, p . 149], so it is easy to see that the assumptions of Theorem 3.2 is satisfied. Also, by the cubic reciprocity, for any prime p such that $p \equiv 1(\bmod 3), 2$ is a cubic residue $(\bmod p)$ if and only if there are integers a, b such that $p=a^{2}+27 b^{2}$ [2, p. 210]. Therefore, we get the following easy application.
Corollary 3.6. Let p be a prime. Then there is an integral solution of

$$
x^{3}+2 y^{3}+4 z^{3}-6 d x y z=p
$$

if and only if $p \equiv 0,2(\bmod 3)$ or $p=a^{2}+27 b^{2}$ for some integers a, b.
Remark 3.7. We can consider other cases by same ways with some calculations and the cubic reciprocity. For the cubic reciprocity, see [2, pp. 209-234].

References

[1] T. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.London, 1974.
[2] F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, Berlin, 2000.
[3] D. A. Marcus, Number Fields, Springer-Verlag, New York-Heidelberg, 1977.
[4] I. Niven, H. S. Zuckerman, and H. Montgomery, An Introduction to the Theory of Numbers, John Wiley \& Sons, Inc., New York, 1991.

Doo Sung Park
Department of Mathematics
California Institute of Technology
California 91125, USA
E-mail address: parkd@caltech.edu
Seung Jin Bang
Department of mathematics
Ajou University
Suwon 443-749, Korea
E-mail address: emath@naver.com

[^0]
[^0]: Jung Oh Choi
 Saetbyeol Middle School
 GYEONGGI-DO 463-020, KOREA
 E-mail address: setfree1@hanmail.net

