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THE NUMBERS THAT CAN BE REPRESENTED
BY A SPECIAL CUBIC POLYNOMIAL

Doo Sung Park, Seung Jin Bang, and Jung Oh Choi

Abstract. We will show that if d is a cubefree integer and n is an integer,
then with some suitable conditions, there are no primes p and a positive
integer m such that

d is a cubic residue (mod p), 3 - m, p ‖ n

if and only if there are integers x, y, z such that

x3 + dy3 + d2z3 − 3dxyz = n.

1. Introduction

The numbers that can be represented by a quadratic polynomial x2 + y2 is
well-known. For an integer n, there are integers x, y satisfying x2 + y2 = n if
and only if there are no primes p and odd positive integer m such that p ≡ 3
(mod 4) and pm ‖ n [4, p. 164]. In this paper, we will study the numbers that
can be represented by the cubic polynomial

x3 + dy3 + d2z3 − 3dxyz.

2. Preliminaries

For a prime p and an integer n such that gcd(n, p) = 1, let n be a cubic
residue (mod p) if p ≡ 1 (mod 3) and there are no integer solutions of

x3 ≡ n (mod p).

For a cubefree integer d, let Rd be the set of all algebraic integers in Q( 3
√

d) [3,
p. 38]. For α ∈ Rd where x, y, z ∈ Q and

α = x + y
3
√

d + z
3
√

d2,

let

N(α) = x3+dy3+d2z3−3dxyz, α = (x2−dyz)+(dz2−xy) 3
√

d+(y2−zx) 3
√

d2.
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Then for any α, β ∈ Rd, N(α)N(β) = N(αβ), N(α) ∈ Z, N(α) = 0 if and only
if α = 0, and N(α) = 1 if and only if α is a unit in Rd [3, pp. 21–22]. Also, the
following formulas

αα = N(α), N(α) = N(α)2, α = N(α)α, αβ = αβ,

(
α

β

)
=

α

β

hold by explicit calculations. For a prime p and a positive integer m, let Fpm

be the finite field with order pm [1, p. 279]. For an integral domain R, let R be
a unique factorization domain if the factorization of elements in R exists and
is unique up to units [1, p. 137].

3. Results and proofs

Lemma 3.1. Assume that d is a cubefree integer, p is a prime where p ≡ 1
(mod 3), and d is not a cubic residue (mod p). If integers x, y, z are a solution
of

x3 + dy3 + d2z3 − 3dxyz ≡ 0 (mod p),

then x ≡ y ≡ z ≡ 0 (mod p).

Proof. A polynomial t3 − d is irreducible in Fp, so Fp3 is a splitting field over
Fp of the polynomial t3 − d [1, p. 280]. Consider Fp3 as Fp[t]/(t3 − d) [1, p.
234]. Also, let α = x + yt + zt2 ∈ Fp3 . Then in Fp3 ,

0 = x3 + dy3 + d2z3 − 3dxyz = N(α) = αα.

If α = 0, then x = y = z = 0 in Fp. If α = 0, then x2 = dyz, dz2 = xy, y2 = zx
in Fp. If x = 0 in Fp, then y = z = 0 in Fp. If x 6= 0 in Fp, then in Fp,

x4 = d2y2z2 = dxy3,

so there is an integer m such that m3 = d in Fp. A contradiction. ¤

Theorem 3.2. Let d be a cubefree integer. Consider an integer n such that
there is an integral solution of

x3 + dy3 + d2z3 − 3dxyz = n.

Then n = µ3ν for some integer µ and a cubefree integer ν such that for any
prime factor p of ν where p ≡ 1 (mod 3), d is a cubic residue (mod p).

Proof. If p is a prime factor of n such that p ≡ 1 (mod 3) and d is not a cubic
residue (mod p), then by the previous lemma, x ≡ y ≡ z ≡ 0. Then p3 | n, so

(
x

p

)3

+ d

(
y

p

)3

+ d2

(
z

p

)3

=
n

p3
.

By iterating this argument, we see that for some positive integer m, p3m ‖ n.
It means this theorem. ¤
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Lemma 3.3. Let p be a prime and t an integer such that gcd(t, p) = 1. Then
there are integers x, y, z such that

|x|, |y|, |z| < 3
√

p, (x, y, z) 6= (0, 0, 0), x + ty + t2z ≡ 0 (mod p).

Proof. The number of all pairs (x, y, z) such that 0 < x, y, z < 3
√

p+1 is bigger
than p, so by the pigeonhole principle, for some integers 0 < x1, x2, y1, y2, z1, z2

< 3
√

p + 1 such that (x1, y1, z1) 6= (x2, y2, z2),

x1 + ty1 + t2z1 ≡ x2 + ty2 + t2z2 (mod p).

Let x = x1−x2, y = y1−y2, z = z1−z2. Then x, y, z satisfy the conditions. ¤

Theorem 3.4. Let d be a cubefree integer. Assume that Rd is a unique factor-
ization domain and for any prime p < 1 + 4d + d2 except the cases when d ≡ 1
(mod p) and d is not a cubic residue (mod p) or when p divides d, there is an
integral solution of

x3 + dy3 + d2z3 − 3dxyz = p.

Then for any integer n = µ3ν where µ is an integer and ν is a cubefree integer
such that d is a cubic residue (mod p) for any prime factor p of ν where p ≡ 1
(mod 3), there is an integral solution of

x3 + dy3 + d2z3 − 3dxyz = n.

Proof. We will first prove this theorem when n is a prime p ≥ 1 + 4d + d2. If
p ≡ 1 (mod 3), then d is a cubic residue . Also, p > 2, 3, d. If p ≡ 5 (mod 6),
then F∗p is a cyclic group of order p− 1 [1, p. 279], so there is an integer t such
that t3 ≡ d (mod p) because gcd(p− 1, 3) = 1. Therefore, in any cases, we can
choose an integer such that t3 ≡ d (mod p). Then because gcd(t, p) = 1, by
the previous lemma, we can choose integers x0, y0, z0 such that

|x0|, |y0|, |z0| < 3
√

p, (x0, y0, z0) 6= (0, 0, 0), x0 + ty0 + t2z0 ≡ 0 (mod p).

Then x3
0 + dy3

0 + d2z3
0 − 3dx0y0z0 = kp for some integer k. Because N(α) 6= 0

where
α = x0 + y0

3
√

d + z0
3
√

d2,

so k is not zero. Also, k < 1 + 4d + d2. Therefore, gcd(k, p) = 1. Because Rd

is a unique factorization domain, there are β, γ ∈ Rd such that

α = βγ, gcd(γ, p) 6= 1, gcd(γ, k) = 1.

Then N(γ) divides N(p) = p3. If p2 divides N(γ), then p2 divides N(α) = kp.
A contradiction. Therefore, N(γ) divides p. Also, γ is not a unit, so N(γ) 6= 1.
Therefore, N(γ) = ±p, so we can choose integers x, y, z such that

N(x + y
3
√

d + z
3
√

d2) = p,

and then x3 + dy3 + d2z3 − 3dxyz = p.
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Also, for any α, β ∈ Rd, N(αβ) = N(α)N(β), and for any prime p, N(p) =
p3. By multiplying elements in Rd what we have earned, for an integer n
satisfying the conditions, there are integers x, y, z such that

N(x + y
3
√

d + z
3
√

d2) = n,

and then x3 + dy3 + d2z3 − 3dxyz = n. ¤

By combining Theorems 3.2 and 3.4, we get the following result.

Corollary 3.5. Let n be an integer. Under the assumptions in Theorem 3.4,
there is an integral solution of

x3 + dy3 + d2z3 − 3dxyz = n

if and only if there are an integer µ and a cubefree integer ν such that n =
µ3ν and d is a cubic residue (mod p) for any prime factor of p where p ≡ 1
(mod 3).

Consider the case of d = 2. Then R2 is a unique factorization domain [3, p.
149], so it is easy to see that the assumptions of Theorem 3.2 is satisfied. Also,
by the cubic reciprocity, for any prime p such that p ≡ 1 (mod 3), 2 is a cubic
residue (mod p) if and only if there are integers a, b such that p = a2 + 27b2

[2, p. 210]. Therefore, we get the following easy application.

Corollary 3.6. Let p be a prime. Then there is an integral solution of

x3 + 2y3 + 4z3 − 6dxyz = p

if and only if p ≡ 0, 2 (mod 3) or p = a2 + 27b2 for some integers a, b.

Remark 3.7. We can consider other cases by same ways with some calculations
and the cubic reciprocity. For the cubic reciprocity, see [2, pp. 209–234].
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