References
- H. Aydin, I. Gultekin, and M. Mulazzani, Torus knots and Dunwoody manifolds, Sibirsk. Mat. Zh. 45 (2004), no. 1, 3-10
- H. Aydin, I. Gultekin, and M. Mulazzani, Torus knots and Dunwoody manifolds, Siberian Math. J. 45 (2004), no. 1, 1-6.
- M. Barnabei and L. B. Montefusco Circulant recursive matrices, Algebraic combinatorics and computer science, 111-127, Springer Italia, Milan, 2001.
- M. R. Casali, Estimating Matveev’s complexity via crystallization theory, Discrete Math. 307 (2007), no. 6, 704-714. https://doi.org/10.1016/j.disc.2006.07.021
- M. R. Casali and P. Cristofori, Computing Matveev’s complexity via crystallization theory: the orientable case, Acta Appl. Math. 92 (2006), no. 2, 113-123. https://doi.org/10.1007/s10440-006-9065-y
- A. Cattabriga and M. Mulazzani, All strongly-cyclic branched coverings of (1, 1)-knots are Dunwoody manifolds, J. London Math. Soc. (2) 70 (2004), no. 2, 512-528. https://doi.org/10.1112/S0024610704005538
- A. Cattabriga and M. Mulazzani, Representations of (1, 1)-knots, Fund. Math. 188 (2005), 45-57. https://doi.org/10.4064/fm188-0-3
- A. Cavicchioli, On some properties of the groups G(n, l), Ann. Mat. Pura Appl. (4) 151 (1988), 303-316. https://doi.org/10.1007/BF01762801
- M. J. Dunwoody, Cyclic presentations and 3-manifolds, Groups-Korea ’94 (Pusan), 47-55, de Gruyter, Berlin, 1995.
- L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds, Forum Math. 13 (2001), no. 3, 379-397. https://doi.org/10.1515/form.2001.013
- L. Grasselli and M. Mulazzani, Seifert manifolds and (1, 1)-knots, Sibirsk. Mat. Zh. 50 (2009), no. 1, 28-39
- L. Grasselli and M. Mulazzani, Seifert manifolds and (1, 1)-knots, Siberian Math. J. 50 (2009), no. 1, 22-31. https://doi.org/10.1007/s11202-009-0003-x
- P. Heegaard, Sur l’ “Analysis situs”, Bull. Soc. Math. France 44 (1916), 161-242.
- A. Kawauchi, A Survey of Knot Theory, Birkhauser, Basel, 1996.
- S. Matveev, Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990), no. 2, 101-130.
- S. Matveev, Algorithmic Topology and Classification of 3-manifolds, Algorithms and Computation in Mathematics, 9. Springer-Verlag, Berlin, 2003.
- S. Matveev, Recognition and tabulation of 3-manifolds, Dokl. Math. 71 (2005), 20-22.
- S. Matveev, Tabulations of 3-manifolds up to complexity 12, available from www.topology.kb.csu.ru/recognizer.
- S. Matveev, C. Petronio, and A. Vesnin, Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds, J. Australian Math. Soc., to appear.
- J. Mayberry and K. Murasugi, Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc. 271 (1982), no. 1, 143-173. https://doi.org/10.2307/1998756
- J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), pp. 175-225. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975.
- J. Minkus, The branched cyclic coverings of 2 bridge knots and links, Mem. Amer. Math. Soc. 35 (1982), no. 255, 1-68.
-
M. Mulazzani, All Lins-Mandel spaces are branched cyclic coverings of
$S^{3}$ , J. Knot Theory Ramifications 5 (1996), no. 2, 239-263. https://doi.org/10.1142/S0218216596000175 - M. Mulazzani, A “universal” class of 4-coloured graphs, Rev. Mat. Univ. Complut. Madrid 9 (1996), no. 1, 165-195.
- L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613. https://doi.org/10.1017/S0305004100043279
- P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics, Vol. 291. Springer-Verlag, Berlin-New York, 1972.
- C. Petronio and A. Vesnin, Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links, preprint, arXiv:math.GT/0612830v2.
- R. C. Randell, The homology of generalized Brieskorn manifolds, Topology 14 (1975), no. 4, 347-355. https://doi.org/10.1016/0040-9383(75)90019-1
Cited by
- Cyclic branched coverings of lens spaces vol.52, pp.3, 2011, https://doi.org/10.1134/S0037446611030050
- Cyclic Branched Coverings Over Some Classes of (1,1)-Knots vol.2013, 2013, https://doi.org/10.1155/2013/549198
- On the Polynomial of the Dunwoody (1, 1)-knots vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.223
- On the complexity of three-dimensional cusped hyperbolic manifolds vol.89, pp.3, 2014, https://doi.org/10.1134/S1064562414030065
- Compact 3-manifolds via 4-colored graphs vol.110, pp.2, 2016, https://doi.org/10.1007/s13398-015-0240-8
- COMPUTING MATVEEV'S COMPLEXITY VIA CRYSTALLIZATION THEORY: THE BOUNDARY CASE vol.22, pp.08, 2013, https://doi.org/10.1142/S0218216513500387
- Complexity computation for compact 3-manifolds via crystallizations and Heegaard diagrams vol.159, pp.13, 2012, https://doi.org/10.1016/j.topol.2012.05.016
- Cyclic generalizations of two hyperbolic icosahedral manifolds vol.159, pp.8, 2012, https://doi.org/10.1016/j.topol.2012.01.016
- Complexity of virtual 3-manifolds vol.207, pp.11, 2016, https://doi.org/10.1070/SM8700
- Сложность виртуальных трехмерных многообразий vol.207, pp.11, 2016, https://doi.org/10.4213/sm8700