1 |
M. J. Dunwoody, Cyclic presentations and 3-manifolds, Groups-Korea ’94 (Pusan), 47-55, de Gruyter, Berlin, 1995.
|
2 |
L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds, Forum Math. 13 (2001), no. 3, 379-397.
DOI
ScienceOn
|
3 |
L. Grasselli and M. Mulazzani, Seifert manifolds and (1, 1)-knots, Sibirsk. Mat. Zh. 50 (2009), no. 1, 28-39
|
4 |
L. Grasselli and M. Mulazzani, Seifert manifolds and (1, 1)-knots, Siberian Math. J. 50 (2009), no. 1, 22-31.
DOI
|
5 |
P. Heegaard, Sur l’ “Analysis situs”, Bull. Soc. Math. France 44 (1916), 161-242.
|
6 |
M. Mulazzani, All Lins-Mandel spaces are branched cyclic coverings of , J. Knot Theory Ramifications 5 (1996), no. 2, 239-263.
DOI
ScienceOn
|
7 |
M. Mulazzani, A “universal” class of 4-coloured graphs, Rev. Mat. Univ. Complut. Madrid 9 (1996), no. 1, 165-195.
|
8 |
C. Petronio and A. Vesnin, Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links, preprint, arXiv:math.GT/0612830v2.
|
9 |
L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613.
DOI
|
10 |
P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics, Vol. 291. Springer-Verlag, Berlin-New York, 1972.
|
11 |
A. Cattabriga and M. Mulazzani, Representations of (1, 1)-knots, Fund. Math. 188 (2005), 45-57.
DOI
|
12 |
R. C. Randell, The homology of generalized Brieskorn manifolds, Topology 14 (1975), no. 4, 347-355.
DOI
ScienceOn
|
13 |
H. Aydin, I. Gultekin, and M. Mulazzani, Torus knots and Dunwoody manifolds, Sibirsk. Mat. Zh. 45 (2004), no. 1, 3-10
|
14 |
H. Aydin, I. Gultekin, and M. Mulazzani, Torus knots and Dunwoody manifolds, Siberian Math. J. 45 (2004), no. 1, 1-6.
|
15 |
M. Barnabei and L. B. Montefusco Circulant recursive matrices, Algebraic combinatorics and computer science, 111-127, Springer Italia, Milan, 2001.
|
16 |
M. R. Casali, Estimating Matveev’s complexity via crystallization theory, Discrete Math. 307 (2007), no. 6, 704-714.
DOI
ScienceOn
|
17 |
M. R. Casali and P. Cristofori, Computing Matveev’s complexity via crystallization theory: the orientable case, Acta Appl. Math. 92 (2006), no. 2, 113-123.
DOI
|
18 |
A. Cattabriga and M. Mulazzani, All strongly-cyclic branched coverings of (1, 1)-knots are Dunwoody manifolds, J. London Math. Soc. (2) 70 (2004), no. 2, 512-528.
DOI
|
19 |
A. Cavicchioli, On some properties of the groups G(n, l), Ann. Mat. Pura Appl. (4) 151 (1988), 303-316.
DOI
|
20 |
A. Kawauchi, A Survey of Knot Theory, Birkhauser, Basel, 1996.
|
21 |
S. Matveev, Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990), no. 2, 101-130.
|
22 |
S. Matveev, Algorithmic Topology and Classification of 3-manifolds, Algorithms and Computation in Mathematics, 9. Springer-Verlag, Berlin, 2003.
|
23 |
S. Matveev, Recognition and tabulation of 3-manifolds, Dokl. Math. 71 (2005), 20-22.
|
24 |
J. Mayberry and K. Murasugi, Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc. 271 (1982), no. 1, 143-173.
DOI
|
25 |
J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), pp. 175-225. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975.
|
26 |
J. Minkus, The branched cyclic coverings of 2 bridge knots and links, Mem. Amer. Math. Soc. 35 (1982), no. 255, 1-68.
|
27 |
S. Matveev, Tabulations of 3-manifolds up to complexity 12, available from www.topology.kb.csu.ru/recognizer.
|
28 |
S. Matveev, C. Petronio, and A. Vesnin, Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds, J. Australian Math. Soc., to appear.
|