DOI QR코드

DOI QR Code

기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석

Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances

  • 송준용 (한국에너지기술연구원 태양광연구단) ;
  • 정대영 (한국에너지기술연구원 태양광연구단) ;
  • 김찬석 (한국에너지기술연구원 태양광연구단) ;
  • 박상현 (한국에너지기술연구원 태양광연구단) ;
  • 조준식 (한국에너지기술연구원 태양광연구단) ;
  • 송진수 (한국에너지기술연구원 태양광연구단) ;
  • 왕진석 (충남대학교 전자전파정보통신과) ;
  • 이정철 (한국에너지기술연구원 태양광연구단)
  • Song, Jun-Yong (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Jeong, Dae-Young (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Kim, Chan-Seok (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Park, Sang-Hyun (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Cho, Jun-Sik (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Song, Jin-Soo (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Wang, Jin-Suk (Department of Electronic, Chungnam National University) ;
  • Lee, Jeong-Chul (Photovoltaic Research Center, Korea Institute of Energy Research)
  • 발행 : 2010.04.27

초록

This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

키워드

참고문헌

  1. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S.Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, Jpn. J. Appl. Phys., 31, 3518 (1992). https://doi.org/10.1143/JJAP.31.3518
  2. M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyawa, 3rd World Conference on Photovoltaic Energv Conversion,1, 955 (2003).
  3. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto andH. Hamakawa, J. Appl. Phys., 67, 6538 (1990). https://doi.org/10.1063/1.345131
  4. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T.Kinoshita, H. Kanno, H. Sakata, E. Maruyamma and M.Tanaka, Sol. Energy Mater. Sol. Cells., 93, 670 (2009). https://doi.org/10.1016/j.solmat.2008.02.037
  5. S. Dauwe, J. Schmidt and R. Hezel, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana (IEEE, Piscataway, NJ, 2002), p.1246.
  6. M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H.M. van der Werf, R. E. I. Schropp and W. F. van der Weg,J. Appl. Phys., 82, 6089 (1997). https://doi.org/10.1063/1.366479
  7. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata,M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama andO. Oota, Prog. Photovoltaics., 8(5), 503 (2000). https://doi.org/10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
  8. N. Jensen, R. M. Hausner, R. B. Bergmann, J. H. Wernerand U. Rau, Prog. Photovoltaics., 10(1), 1 (2002). https://doi.org/10.1002/pip.398
  9. H. Angermann, W. Henrion, A. Roseler and M. Rebien,Mater. Sci. Eng., B 73, 178 (2000). https://doi.org/10.1016/S0921-5107(99)00457-2
  10. H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad,M. Schmidt, K. Hübener, J. Polte and J. Hauschild,Appl. Surf. Sci., 254, 3615 (2008). https://doi.org/10.1016/j.apsusc.2007.10.099
  11. H. Angermann, J. Rappich, I. Sieber, K. Hubener and J. Hauschild, Analytical and Bio analytical Chemistry, 390,1463 (2008). https://doi.org/10.1007/s00216-007-1738-5
  12. H. Angermann, L. Korte, J. Rappich, E. Conrad, I.Sieber,M. Schmidt, K. Hübener and J. Hauschild, Thin Solid Films, 516, 6775 (2008). https://doi.org/10.1016/j.tsf.2007.12.033
  13. W. Kern, J. Electrochem. Soc., 137(6), 1887 (1990). https://doi.org/10.1149/1.2086825
  14. Y. A. Chabal, G. S. Higashi, K. Raghavachari and V. A.Burrows, J. Vac. Sci. Technol., A7(3), 2104 (1989).
  15. H. J. Lewerenz and T. Bitzer, J. Electrochem. Soc.,139(2), L21 (1992). https://doi.org/10.1149/1.2069274
  16. Y. J. Chabal, G. S. Higashi, K. Raghavachari and V. A.Burrows, J. Vac. Sci. Technol., 7(3), 2104 (1989). https://doi.org/10.1116/1.575980
  17. G. W. Trucks, K. Raghavachari, G. S. Higashi and Y. J.Chabal, Phys. Rev. Lett., 65, 504 (1990). https://doi.org/10.1103/PhysRevLett.65.504
  18. S. Watanabe, N. Nakayama and T. Ito, Appl. Phys. Lett.,59, 1458 (1991). https://doi.org/10.1063/1.105287
  19. G. S. Higashi, Y. J. Chabal, G. W. Trucks and K. Raghavachari,Appl. Phys. Lett., 56, 656 (1990). https://doi.org/10.1063/1.102728
  20. H. Angermann, W. Henrion, M. Rebien and A. Roseler,Sol. Energy Mater. Sol. Cells, 83, 331 (2004). https://doi.org/10.1016/j.solmat.2004.01.031
  21. H. Angermann, J. Rappich, L. Korte, I. Sieber, E.Conrad, M. Schmidt, K. Hübener, J. Polte and J.Hauschild, Appl. Surf. Sci., 254, 3615 (2008). https://doi.org/10.1016/j.apsusc.2007.10.099
  22. H. Angermann, L. Korte, J. Rappich, E. Conrad, I.Sieber, M. Schmidt, K. Hübener and J. Hauschild, Thin Solid Films, 516, 6775 (2008). https://doi.org/10.1016/j.tsf.2007.12.033
  23. R. Sinton and A. Cuevas, Appl. Phys. Lett., 69(17),2510 (1996). https://doi.org/10.1063/1.117723
  24. Y. S. Kim, C. I. Drowly and C. Hu., 14th IEEE Photovoltaic Specialist Conf., San Diego, CA, January 1980, p. 560.
  25. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevasand R. Alcubilla, Appl. Phys. Lett., 79, 2199 (2001). https://doi.org/10.1063/1.1404406
  26. R. A. Sinton and A. Cuevas, 16th European PVSEC,1152 (2000).
  27. M. Z. Burrows, U. K. Das, S. Bowden, S. S. Hegedus, R.L. Opila and R. W. Birkmire, in proceedings of the Materials Research Society Symposium, San Francisco, CA, 1066 (2008).
  28. Z. Chen, S.K. Pang, K. Yasutake and A. Rohatgi, J. Appl. Phys., 74, 2856 (1993). https://doi.org/10.1063/1.354638
  29. A. G. Aberle and R. Hezel, Prog. Photovoltaics., 5, 29(1997). https://doi.org/10.1002/(SICI)1099-159X(199701/02)5:1<29::AID-PIP149>3.0.CO;2-M
  30. M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L.Roybal, H. M. Branz and T. H. Wang, Proceedings of the 4th IEEE WCPEC, Hawaii, 1485 (2006).
  31. K. Pierza, W. Fuhsa and H. Mella, J. Non-Cryst. Solids,114, 651 (1989). https://doi.org/10.1016/0022-3093(89)90679-0
  32. S. Bowden and A. Rohatgi, in proceedings of the 17th European Photovoltaic Solar Energy Conference,Munich, 1802 (2001).
  33. F. Einsele, P. J. Rostan, M. B. Schubert and U. Rau, J. Appl. Phys. 102, 094507 (2007). https://doi.org/10.1063/1.2803749