References
- Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004,306, 666. https://doi.org/10.1126/science.1102896
- Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.;Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457,706. https://doi.org/10.1038/nature07719
- Li, X.; Cai, W.; Ahn, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni,A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.;Ruoff, R. S. Science 2009, 324, 1312. https://doi.org/10.1126/science.1171245
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus,M. S.; Kong, J. Nano Lett. 2009, 9, 30. https://doi.org/10.1021/nl801827v
- Wallace, P. R. Phys. Rev. 1947, 71, 622. https://doi.org/10.1103/PhysRev.71.622
- Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/RevModPhys.81.109
- Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
- Reich, S.; Thomsen, C. Phil. Trans. R. Soc. Lond. A 2004, 362,2271. https://doi.org/10.1098/rsta.2004.1454
- Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. https://doi.org/10.1103/PhysRevLett.85.5214
- Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G. ; Dresselhaus,M. S.; Pimenta, M. A. Phys. Rev. Lett. 2002, 88, 027401.
- Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.;Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrai, A. C. Nano Lett. 2009, 9, 1433. https://doi.org/10.1021/nl8032697
- Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S. Carbon 2009, 47, 1303. https://doi.org/10.1016/j.carbon.2009.01.009
- Ferrai, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.;Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim,A. K. Phys. Rev. Lett. 2006, 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401
- Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y.H.; Chen, W.; Wee, A. T. S. J. Phys. Chem. C 2008, 112, 10637. https://doi.org/10.1021/jp8008404
- Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.;Shen, Z. X. Phys. Rev. B 2008, 77, 115416. https://doi.org/10.1103/PhysRevB.77.115416
- Calizo, I.; Bao, W.; Miao, F.; Lau, C. N.; Balandin, A. A. Appl. Phys. Lett. 2007, 91, 201904. https://doi.org/10.1063/1.2805024
- Calizo, I.; Ghosh, S.; Bao, W.; Miao, F.; Lau, C. N.; Balandin, A. A. Sol. Stat. Comm. 2009, 149, 1132. https://doi.org/10.1016/j.ssc.2009.01.036
- Das, A.; Chakraborty, B.; Sood, A. K. Bull. Mater. Sci. 2008, 31,579. https://doi.org/10.1007/s12034-008-0090-5
- Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira,H. I. S.; Singh, M. K.; Grácio, J. Chem. Mater. 2009, 21, 4796. https://doi.org/10.1021/cm901052s
- Aroca, R. Surface Enhanced Vibrational Spectroscopy; John Wiley & Sons: 2006.
- Yoon, J. K.; Kim, K.; Shin, K. S. J. Phys. Chem. C 2009, 113,1769. https://doi.org/10.1021/jp8089243
- Park, W.-H.; Ahn, S.-H.; Kim, Z. H. ChemPhysChem 2008, 9,2491. https://doi.org/10.1002/cphc.200800563
- Le, F.; Lwin, N. Z.; Steele, J. M.; Kall, M.; Hallas, N. J.; Nordlander,P. Nano Lett. 2005, 5, 2009. https://doi.org/10.1021/nl0515100
- Christ, A.; Zentgraf, T.; Tikhodeev, S. G.; Gippius, N. A.; Martin,O, J, F.; Kuhl, J.; Giessen, H. Phys. Stat. Sol. (b) 2006, 243, 2344. https://doi.org/10.1002/pssb.200668055
- Jung, H. Y.; Park, Y.-K.; Park, S.; Kim, S. K. Anal. Chim. Act. 2007, 602, 236. https://doi.org/10.1016/j.aca.2007.09.026
- Yun, S.; Park, Y.-K.; Park, S.; Kim, S. K. Anal. Chem. 2007, 79,8584. https://doi.org/10.1021/ac071440c
- Yun, S.; Oh, M. K.; Kim, S. K.; Park, S. J. Phys. Chem. C 2009,113, 13551. https://doi.org/10.1021/jp9024624
- Oh, M. K.; Yun, S.; Kim, S. K.; Park, S. Anal. Chim. Act. 2009,649, 111. https://doi.org/10.1016/j.aca.2009.07.025
- Oh, M. K.; Kim, S. K.; Park, S.; Lim, S. J. Compt. Theor. Nanosci.2010, 7, 1085. https://doi.org/10.1166/jctn.2010.1456
- Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H. Appl. Phys. Lett. 2008, 92, 043121. https://doi.org/10.1063/1.2838745
- Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano Lett. 2008,8, 4603. https://doi.org/10.1021/nl802996s
- Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.;Brink, J. van den.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803. https://doi.org/10.1103/PhysRevLett.101.026803
- Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77,235430. https://doi.org/10.1103/PhysRevB.77.235430
- Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams,E. D. Nano Lett. 2007, 7, 1643. https://doi.org/10.1021/nl070613a
Cited by
- Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets vol.13, pp.47, 2011, https://doi.org/10.1039/c1cp22727k
- Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles vol.5, pp.5, 2011, https://doi.org/10.1021/nn1035203
- Evidence of Plasmonic Coupling in Gallium Nanoparticles/Graphene/SiC vol.8, pp.17, 2012, https://doi.org/10.1002/smll.201200694
- Synthesis and Nanoscale Investigation of the Electrical Properties of Quasi-2D Semiconductor Nb $_{\bf 2}$O$_{\bf 5}$ Nanosheets vol.12, pp.4, 2013, https://doi.org/10.1109/TNANO.2013.2265893
- Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy vol.62, pp.43, 2014, https://doi.org/10.1021/jf5036417
- Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors vol.137, pp.8, 2015, https://doi.org/10.1021/ja511512m
- Using the Thickness of Graphene to Template Lateral Subnanometer Gaps between Gold Nanostructures vol.15, pp.1, 2015, https://doi.org/10.1021/nl504121w
- Gold–graphene nanocomposites for sensing and biomedical applications vol.3, pp.21, 2015, https://doi.org/10.1039/C5TB00511F
- Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles vol.6, pp.1, 2016, https://doi.org/10.1038/srep30320
- Single layer graphene band hybridization with silver nanoplates: Interplay between doping and plasmonic enhancement vol.109, pp.10, 2016, https://doi.org/10.1063/1.4962401
- Continuous Reduced Graphene Oxide Film Prepared by Stitching of Nanosheets at the Interface of Two Immiscible Solutions vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.713
- Characterization of Few-Layer Graphene on Stretchable Substrate Using Thermally-Treated Exfoliation vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1457
- Surface‐Enhanced Raman Scattering of Single‐ and Few‐Layer Graphene by the Deposition of Gold Nanoparticles vol.17, pp.8, 2010, https://doi.org/10.1002/chem.201002027
- Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films vol.3, pp.17, 2010, https://doi.org/10.1039/c3ra00028a
- A simple method for achieving surface-enhanced Raman scattering of single-layer and few-layer graphene vol.1040, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2013.03.011
- Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmented‐Gold Substrates via Cold‐Etching vol.7, pp.21, 2019, https://doi.org/10.1002/adom.201900905