DOI QR코드

DOI QR Code

Effect of Gold Substrates on the Raman Spectra of Graphene

  • Published : 2010.04.20

Abstract

Raman spectra of a single layer graphene sheet placed in different gold substrates were obtained and are discussed in the context of surface enhanced Raman scattering (SERS). The gold substrates were composed of a combination of a thermally deposited gold film and a close-packed gold nanosphere layer. The SERS effects were negligible when the excitation wavelength was 514 nm, while the Raman signals were enhanced 3-to 50-fold when the excitation wavelength was 633 nm. The large SERS enhancement accompanied a spectral distortion with appearance of several unidentifiable peaks, as well as enhancement of a broadened D peak. These phenomena are interpreted as the local field enhancement in the nanostructure of the gold substrates. The difference in the enhancement factors among the various gold substrates is explained with a model in which the spatial distribution and polarization of the local field and the orientation of the inserted graphene sheet are considered important.

Keywords

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004,306, 666. https://doi.org/10.1126/science.1102896
  2. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.;Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457,706. https://doi.org/10.1038/nature07719
  3. Li, X.; Cai, W.; Ahn, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni,A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.;Ruoff, R. S. Science 2009, 324, 1312. https://doi.org/10.1126/science.1171245
  4. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus,M. S.; Kong, J. Nano Lett. 2009, 9, 30. https://doi.org/10.1021/nl801827v
  5. Wallace, P. R. Phys. Rev. 1947, 71, 622. https://doi.org/10.1103/PhysRev.71.622
  6. Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/RevModPhys.81.109
  7. Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
  8. Reich, S.; Thomsen, C. Phil. Trans. R. Soc. Lond. A 2004, 362,2271. https://doi.org/10.1098/rsta.2004.1454
  9. Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. https://doi.org/10.1103/PhysRevLett.85.5214
  10. Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G. ; Dresselhaus,M. S.; Pimenta, M. A. Phys. Rev. Lett. 2002, 88, 027401.
  11. Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.;Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrai, A. C. Nano Lett. 2009, 9, 1433. https://doi.org/10.1021/nl8032697
  12. Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S. Carbon 2009, 47, 1303. https://doi.org/10.1016/j.carbon.2009.01.009
  13. Ferrai, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.;Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim,A. K. Phys. Rev. Lett. 2006, 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  14. Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H. M.; Wu, Y.H.; Chen, W.; Wee, A. T. S. J. Phys. Chem. C 2008, 112, 10637. https://doi.org/10.1021/jp8008404
  15. Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.;Shen, Z. X. Phys. Rev. B 2008, 77, 115416. https://doi.org/10.1103/PhysRevB.77.115416
  16. Calizo, I.; Bao, W.; Miao, F.; Lau, C. N.; Balandin, A. A. Appl. Phys. Lett. 2007, 91, 201904. https://doi.org/10.1063/1.2805024
  17. Calizo, I.; Ghosh, S.; Bao, W.; Miao, F.; Lau, C. N.; Balandin, A. A. Sol. Stat. Comm. 2009, 149, 1132. https://doi.org/10.1016/j.ssc.2009.01.036
  18. Das, A.; Chakraborty, B.; Sood, A. K. Bull. Mater. Sci. 2008, 31,579. https://doi.org/10.1007/s12034-008-0090-5
  19. Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira,H. I. S.; Singh, M. K.; Grácio, J. Chem. Mater. 2009, 21, 4796. https://doi.org/10.1021/cm901052s
  20. Aroca, R. Surface Enhanced Vibrational Spectroscopy; John Wiley & Sons: 2006.
  21. Yoon, J. K.; Kim, K.; Shin, K. S. J. Phys. Chem. C 2009, 113,1769. https://doi.org/10.1021/jp8089243
  22. Park, W.-H.; Ahn, S.-H.; Kim, Z. H. ChemPhysChem 2008, 9,2491. https://doi.org/10.1002/cphc.200800563
  23. Le, F.; Lwin, N. Z.; Steele, J. M.; Kall, M.; Hallas, N. J.; Nordlander,P. Nano Lett. 2005, 5, 2009. https://doi.org/10.1021/nl0515100
  24. Christ, A.; Zentgraf, T.; Tikhodeev, S. G.; Gippius, N. A.; Martin,O, J, F.; Kuhl, J.; Giessen, H. Phys. Stat. Sol. (b) 2006, 243, 2344. https://doi.org/10.1002/pssb.200668055
  25. Jung, H. Y.; Park, Y.-K.; Park, S.; Kim, S. K. Anal. Chim. Act. 2007, 602, 236. https://doi.org/10.1016/j.aca.2007.09.026
  26. Yun, S.; Park, Y.-K.; Park, S.; Kim, S. K. Anal. Chem. 2007, 79,8584. https://doi.org/10.1021/ac071440c
  27. Yun, S.; Oh, M. K.; Kim, S. K.; Park, S. J. Phys. Chem. C 2009,113, 13551. https://doi.org/10.1021/jp9024624
  28. Oh, M. K.; Yun, S.; Kim, S. K.; Park, S. Anal. Chim. Act. 2009,649, 111. https://doi.org/10.1016/j.aca.2009.07.025
  29. Oh, M. K.; Kim, S. K.; Park, S.; Lim, S. J. Compt. Theor. Nanosci.2010, 7, 1085. https://doi.org/10.1166/jctn.2010.1456
  30. Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H. Appl. Phys. Lett. 2008, 92, 043121. https://doi.org/10.1063/1.2838745
  31. Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano Lett. 2008,8, 4603. https://doi.org/10.1021/nl802996s
  32. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.;Brink, J. van den.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803. https://doi.org/10.1103/PhysRevLett.101.026803
  33. Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77,235430. https://doi.org/10.1103/PhysRevB.77.235430
  34. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams,E. D. Nano Lett. 2007, 7, 1643. https://doi.org/10.1021/nl070613a

Cited by

  1. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets vol.13, pp.47, 2011, https://doi.org/10.1039/c1cp22727k
  2. Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles vol.5, pp.5, 2011, https://doi.org/10.1021/nn1035203
  3. Evidence of Plasmonic Coupling in Gallium Nanoparticles/Graphene/SiC vol.8, pp.17, 2012, https://doi.org/10.1002/smll.201200694
  4. Synthesis and Nanoscale Investigation of the Electrical Properties of Quasi-2D Semiconductor Nb $_{\bf 2}$O$_{\bf 5}$ Nanosheets vol.12, pp.4, 2013, https://doi.org/10.1109/TNANO.2013.2265893
  5. Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy vol.62, pp.43, 2014, https://doi.org/10.1021/jf5036417
  6. Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors vol.137, pp.8, 2015, https://doi.org/10.1021/ja511512m
  7. Using the Thickness of Graphene to Template Lateral Subnanometer Gaps between Gold Nanostructures vol.15, pp.1, 2015, https://doi.org/10.1021/nl504121w
  8. Gold–graphene nanocomposites for sensing and biomedical applications vol.3, pp.21, 2015, https://doi.org/10.1039/C5TB00511F
  9. Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles vol.6, pp.1, 2016, https://doi.org/10.1038/srep30320
  10. Single layer graphene band hybridization with silver nanoplates: Interplay between doping and plasmonic enhancement vol.109, pp.10, 2016, https://doi.org/10.1063/1.4962401
  11. Continuous Reduced Graphene Oxide Film Prepared by Stitching of Nanosheets at the Interface of Two Immiscible Solutions vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.713
  12. Characterization of Few-Layer Graphene on Stretchable Substrate Using Thermally-Treated Exfoliation vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1457
  13. Surface‐Enhanced Raman Scattering of Single‐ and Few‐Layer Graphene by the Deposition of Gold Nanoparticles vol.17, pp.8, 2010, https://doi.org/10.1002/chem.201002027
  14. Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films vol.3, pp.17, 2010, https://doi.org/10.1039/c3ra00028a
  15. A simple method for achieving surface-enhanced Raman scattering of single-layer and few-layer graphene vol.1040, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2013.03.011
  16. Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmented‐Gold Substrates via Cold‐Etching vol.7, pp.21, 2019, https://doi.org/10.1002/adom.201900905