DOI QR코드

DOI QR Code

Photophysical and Electrochmical Studies of N,N-Bis (2,5-di-tert-butylphenyl) - 3,4,9,10 perylenebis (dicarboximide) (DBPI)

  • El-Hallag, Ibrahim S. (Chemistry Department, Faculty of Science, Tanta University) ;
  • El-Daly, Samy A. (Chemistry Department, Faculty of Science, Tanta University)
  • Published : 2010.04.20

Abstract

The titled dye of DBPI gives amplified spontaneous emission (ASE) with maximum at 580 nm upon pumping by nitrogen laser (${\lambda}_{ex}\;=\;337.1\;nm$). The ground state absorption cross section (${\sigma}_A$) and emission cross section (${\sigma}_E$) as well as effective emission cross section(${\sigma}^*_E$) have been determined. The electronic absorption spectra of DBPI were measured in ethanol and tetrahydrofuran at room and low temperature. DBPI displays molecular aggregation in water. The photochemical reactivity of DBPI was also studied in carbon tetrachloride upon irradiation with 525 nm light. The electrochemical investigation of DBPI dye has been carried out using cyclic voltammetry and convolution deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol/L tetrabutyl ammonium perchlorate (TBAP) in two different solvents acetonitrile ($CH_3CN$) and dimethylformamide (DMF). The species were reduced via consumption of two sequential electrons to form radical anion and dianion (EE mechanism). In switching the potential to positive direction, the compound was oxidized by loss of two sequential electrons, which were followed by a fast dimerization and/or aggregation process i.e $EC_{dim1}EC_{dim2}$ mechanism. The electrode reaction pathway and the chemical and electrochemical parameters of the investigated compound were determined using cyclic and convolutive voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

Keywords

References

  1. Luckac, I.; Langhals, H. Chem. Ber. 1983, 116, 3524. https://doi.org/10.1002/cber.19831161027
  2. Ford, W. E. J. Chem. 1986, 34, 43
  3. Ford, W. E. J. Chem. 1987, 37, 189.
  4. Balzani, V.; Bolletta, F.; Scandola, F.; Ballardini, R. Pur. Appl. Chem. 1975, 51, 299.
  5. Darwent, J. R.; Douglas, P.; Harriman, A.; Rickoux, G. M. C. Coord. Chem. Rev. 1982, 44, 83. https://doi.org/10.1016/S0010-8545(00)80518-4
  6. Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401. https://doi.org/10.1021/cr00072a005
  7. Aubert, C.; Funfshiling, J.; Granacher, I. Z.; Langhals, H. Anal. Chem. 1985, 320, 361. https://doi.org/10.1007/BF00488124
  8. Sandra, M.; Bird, G. R. Opt. Commun. 1984, 851, 62.
  9. Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B.J. Am. Chem. Soc. 1985, 107, 5562. https://doi.org/10.1021/ja00305a059
  10. Rademacher, A.; Markle, S.; Langhals, H. Chem. Ber. 1982, 115,2927. https://doi.org/10.1002/cber.19821150823
  11. Langhals, H. Chem. Ber. 1985, 118, 4641. https://doi.org/10.1002/cber.19851181138
  12. Ford, W. E.; Komot, P. V. J. Phys. Chem. 1987, 91, 6373. https://doi.org/10.1021/j100309a012
  13. Ebeid, E. M.; El-Daly, S. A.; Langhals, H. J. Phys. Chem. 1988,92, 4565. https://doi.org/10.1021/j100326a062
  14. El-Daly, S. A. J. Photochem & Photobiol, A: Chem. 1992, 68, 51. https://doi.org/10.1016/1010-6030(92)85017-O
  15. El-Daly, S. A.; Okamoto, M.; Hirayama, S. J. Photochem& Photobiol. A: Chem. 1995, 91, 105. https://doi.org/10.1016/1010-6030(95)04071-M
  16. El-Daly, S. A.; Hirayama, S. J. Photochem. & Photobiol. A: Chem.1997, 110, 59. https://doi.org/10.1016/S1010-6030(97)00132-9
  17. El-Daly, S. A. Montshefite fur Chemie 1998, 129, 835.
  18. Demas, J. N. Excited state lifetime measurements; Academic Press:New York, 1993; Chap. 6.
  19. Klink, M. Ph. D. Thesis, University of Konstanz, 1995.
  20. Hatchard, C. G.; Parker, C. A. Proc. Ray. Soc. 1965, A 235, 518.
  21. Steven Murov, L. Hand book of Photochemistry; Marcel Dekker INC: New York, 1973; Sec. 13.
  22. Greef, R.; Peat, R.; Peter, L. M.; Pletcher, D.; Robinson, J. Instrumental Method in Electrochemistry; John Wiley and Sons: New York, 1985; Chap. 6.
  23. Kissinger, P. T.; Heineman, W. R. J. Chem. Edu. 1983, 60, 703.
  24. Polcyn, D. S.; Shain, I. Anal. Chem. 1966, 38, 371. https://doi.org/10.1021/ac60237a025
  25. Langhals, H.; Karolin, J.; Johansson, L. B. J. Chem. Soc. Faraday Trans. 1998, 91, 2919.
  26. Ebeid, E. M.; Issa, R. M.; Ghoneim, M. M.; El-Daly, S. A. J. Chem. Soc. Faraday Trans. 1986, 1, 82, 909.
  27. Bard, A. J.; Ledwith, A.; Shine, H. J. Adv. Phys. Org. Chem. 1971, 21, 155.
  28. Shimamon H. In Photochemistry and Photophysics; Robek, J. F., Ed., CRC Press: New York, 1992; Vol. VI, Chap. 2, p 65.
  29. Azim, S. A.; El-Daly, H. A.; El-Daly, S. A.; Abou-zeid, Kh. A.;Ebeid, E. M.; Heldt, J. R. J. Chem. Soc. Faraday Trans. 1996, 92,2685. https://doi.org/10.1039/ft9969202685
  30. El-Daly. S. A. Spectrochimica Acta part. 1999, A 55, 143.
  31. El-Daly, S. A.; Fayed, T. A. J. Photochem. & Photobiol. A: Chem.2000, 137, 15. https://doi.org/10.1016/S1010-6030(00)00333-6
  32. El-Daly, S. A.; Awed, M. K.; Abdel-Halim, S. T.; Dowider, D. A. Spectrochimica Acta part A, In Press 2008.
  33. El-Daly, S. A.; El-Hallag, I. S.; Ebeid, E. M.; Ghoneim, M. M. Chin. J. Chem. 2009, 27, 241. https://doi.org/10.1002/cjoc.200990039
  34. Nicholson, R. S.; Shain, I. Anal. Chem. 1965, 37, 722. https://doi.org/10.1021/ac60225a042
  35. Tsierkezos, N. G. J. Solution Chem. 2007, 36, 1301 https://doi.org/10.1007/s10953-007-9188-4
  36. El-Hallag, I. S.; Ghoneim, M. M.; Hammam, E. Anal. Chim. Acta2000, 414, 173. https://doi.org/10.1016/S0003-2670(00)00819-9
  37. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications; Wiley: New York, 1980.
  38. El-Hallag, I. S.; Hassanien. A. M. Collect. Czech. Chem. Commun.1999, 64, 1953. https://doi.org/10.1135/cccc19991953
  39. El-Hallag, I. S.; Ghoneim, M. M. Monatsh. Chem. 1999, 130, 525.
  40. Ammar, F.; Saveant, J. M. J. Electroanal. Chem. 1973, 47, 215. https://doi.org/10.1016/S0022-0728(73)80448-6
  41. Catton, R. H.; Chisholm, M. H.; Huffman, J. C.; Lobkovsky, E. B.J. Am. Chem. Soc. 1991, 113, 8709. https://doi.org/10.1021/ja00023a019
  42. Dalrymple-Alford, P.; Goto, M.; Oldham, K. B. Anal. Chem. 1977,47, 1390.
  43. Robin, M. B.; Day, P. Adv. Inorg. Chem. Radioche. 1967, 10, 247.
  44. Cristina, F.; Ingo, O.; Tobias, S.; Eduard, F.; Gerd, S.; Michel, S.;Andreas, H.; Mark, van der A.; Frans C. de S.; Klaus, M.; Johan.;H. J. Phys. Chem. C 2007, 111(12), 4861. https://doi.org/10.1021/jp068877t
  45. Larumbe, D.; Moreno, M.; Gallardo, I.; Bertran, J.; Andrieux, C. P. J. Chem. Soc., Perkin Trans. 1991, 2, 1437.
  46. Macdonald, J. R. Physical review 1953, 92, 4. https://doi.org/10.1103/PhysRev.92.4
  47. Marcoux, L. S.; Adams, R. N.; Feldberg, S. W. J. Phys. Chem.1969, 73, 2611. https://doi.org/10.1021/j100842a025

Cited by

  1. Fluorescence Quenching of Perylene DBPI Dye by Colloidal Low-Dimensional Gold Nanoparticles vol.25, pp.4, 2015, https://doi.org/10.1007/s10895-015-1578-1
  2. A New Candidate Laser Dye Based 1,4-Bis[β-(2-Naphthothiazolyle)Vinyl]Benzene. Spectroscopic Behavior, Laser Parameters and Excitation Energy Transfer vol.28, pp.3, 2018, https://doi.org/10.1007/s10895-018-2236-1
  3. Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores vol.33, pp.6, 2010, https://doi.org/10.5012/bkcs.2012.33.6.1900
  4. Experimental Determination of Ground and Excited State Dipole Moments of N, N-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboximide) (DBPI) A Photostable Laser Dye vol.24, pp.4, 2010, https://doi.org/10.1007/s10895-014-1415-y