DOI QR코드

DOI QR Code

Synthesis and Properties of Arylacetylene Resins with Siloxane Units

  • Gao, Fei (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Zhang, Lingling (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Tang, Lemin (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Zhang, Jian (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Zhou, Yan (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Huang, Farong (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology) ;
  • Du, Lei (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
  • Published : 2010.04.20

Abstract

A series of arylacetylene resins with siloxane units were synthesized by the condensation reactions of m-diethynylbenzene magnesium reagents with various $\alpha,\omega$-bis(chloro)dimethylsiloxanes. These resins are liquids and are miscible with common organic solvents at room temperature. The structures of the resins were characterized by FT-IR, $^1H$ NMR, $^{13}C$ NMR, $^{29}Si$ NMR, and gel permeation chromatography (GPC). The thermal behaviors of the resins were examined with differential scanning calorimetry (DSC). These resins have good processability. They can be thermally cross-linked through the ethynyl groups to produce cured resins. The thermal and thermooxidative stabilities of the cured resins were studied by thermogravimetric analysis (TGA). The cured resins possess high thermal and thermooxidative stability. Their decomposition occurs at above $500^{\circ}C$ in both $N_2$ and air. With increasing the length of siloxane units in the resins, the thermal stability of the cured resins decreases in $N_2$. When the cured resins were sintered above $1450^{\circ}C$ under argon, hard and glassy SiOC ceramics were obtained. These SiOC ceramics have the decomposition temperatures at 5% weight loss above $800^{\circ}C$ in air.

Keywords

References

  1. Hay, A. S. J. Org. Chem. 1960, 25, 637.
  2. Zaldivar, R. J.; Rellick, G. S.; Yang, J. M. SAMPE 1991, 27, 29.
  3. Katzman, H. A.; Mallon, J. J.; Barry, W. T. J. Adv. Mater. 1995, 26,21.
  4. Itoh, M.; Mitsuzuka, M.; Iwata, K.; Inoue, K. Macromolecules1994, 27, 7917. https://doi.org/10.1021/ma00104a056
  5. Itoh, M.; Inoue, K.; Iwata, K.; Ishikawa, J.; Takenaka, Y. Adv. Mater.1997, 9, 1187. https://doi.org/10.1002/adma.19970091514
  6. Itoh, M.; Inoue, K.; Iwata, K.; Mitsuzuka, M.; Kakigano, T. Macromolecules1997, 30, 694. https://doi.org/10.1021/ma961081f
  7. Itoh, M.; Iwata, K.; Ishikawa, J.; Sukawa, H.; Kimura, H. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2658. https://doi.org/10.1002/pola.1242
  8. Buvat, P.; Jousse, F.; Delnaud, L.; Levassort, C. International SAMPE Symposium and Exhibition 2001, 46, 134.
  9. Wang, F.; Zhang, J.; Huang, J. X.; Yan, H.; Huang, F. R.; Du, L. Polym. Bull. 2006, 56, 19. https://doi.org/10.1007/s00289-005-0464-4
  10. Yin, G. G.; Zhang, J.; Wang, C. F.; Huang, F. R.; Du, L. e-Polymers2008, No. 067.
  11. Li, Q.; Zhou, Y.; Hang, X. D.; Deng, S. F.; Huang, F. R.; Du, L.; Li, Z. P. Eur. Polym. J. 2008, 44, 2538. https://doi.org/10.1016/j.eurpolymj.2008.06.018
  12. Zhang, L. L.; Gao, F.; Wang, C. F.; Zhang, J.; Huang, F. R.; Du,L. Chin. J. Polym. Sci. 2009, Accepted.
  13. Lee, I. S.; Lee, C. G.; Kwak, Y. W.; Gal, Y. S. Bull. Korean Chem. Soc. 2009, 30, 309. https://doi.org/10.5012/bkcs.2009.30.2.309
  14. Zeigler, J. M.; Fearon, F. W. Silicon-Based Polymer Science: A Comprehensive Resource; ACS Symposium Series 224, American Chemical Society: Washington, DC, 1990.
  15. Dvornic, P. R.; Lenz, R. W. High Temperature Siloxane Elastomers; Huthig & Wepf: Heidelberg, 1990.
  16. Suzuki, T.; Mita, I. Eur. Polym. J. 1992, 28, 1373. https://doi.org/10.1016/0014-3057(92)90278-A
  17. Son, D. Y.; Keller, T. M. Macromolecules 1995, 28, 399. https://doi.org/10.1021/ma00105a060
  18. Son, D. Y.; Keller, T. M. J. Polym. Sci. Part A: Polym. Chem. 1995,33, 2969. https://doi.org/10.1002/pola.1995.080331715
  19. Sundar, R. A.; Keller, T. M. J. Polym. Sci. Part A: Polym. Chem.1997, 35, 2387. https://doi.org/10.1002/(SICI)1099-0518(19970915)35:12<2387::AID-POLA8>3.0.CO;2-S
  20. Homrighausen, C. L.; Keller, T. M. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1334. https://doi.org/10.1002/pola.10110
  21. Beckham, H. W.; Keller, T. M. J. Mater. Chem. 2002, 12, 3363. https://doi.org/10.1039/b207065k
  22. Homrighausen, C. L.; Keller, T. M. Polymer 2002, 43, 2619. https://doi.org/10.1016/S0032-3861(02)00068-X
  23. Kolel-Veetil, M. K.; Beckham, H.; Keller, T. M. Chem. Mater. 2004, 16, 3162. https://doi.org/10.1021/cm035348i
  24. Kolel-Veetil, M. K.; Keller, T. M. J. Mater. Chem. 2003, 13, 1652. https://doi.org/10.1039/b303751g
  25. Yamaguchi, B.; Fujisaka, T.; Okada, K. Japanese Patent 8151447, 1996.
  26. Huang, F. R.; Du, L.; Wang, F.; Gao, F. Chinese Patent 1709928,2005.
  27. Mirskov, R. G.; Rakhlin, V. I.; Voronkov, M. G.; Gendin, D. V. Russ. J. Gen. Chem. 2003, 73, 165. https://doi.org/10.1023/A:1024715315894
  28. Teng, C. J.; Weber, W. P.; Cai, G. Macromolecules 2003, 36, 5126. https://doi.org/10.1021/ma030162q
  29. Beckmann, J.; Dakternieks, D.; Duthie, A.; Foitizik, R. C. Silicon Chem. 2003, 2, 27. https://doi.org/10.1023/B:SILC.0000047924.69957.b1
  30. Yoshino, K.; Kawamata, A.; Uchida, H.; Kabe, Y. Chem. Lett. 1990, 2133.
  31. Uchida, H.; Kabe, Y.; Yoshino, K.; Tsumuraya, T.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7077. https://doi.org/10.1021/ja00175a062
  32. Ishikawa, M.; Toyoda, E.; Ishii, M.; Kunai, A.; Yamamoto, Y.; Yamamoto, M. Organometallics 1994, 13, 808. https://doi.org/10.1021/om00015a014
  33. Maya, E. M.; Snow, A. W.; Buckley, L. J. Macromolecules 2002,35, 460. https://doi.org/10.1021/ma011158m

Cited by

  1. Synthesis, characterization, and thermal curing of a novel polyhedral oligomeric octa(propargylaminophenyl)silsesquioxane vol.127, pp.1, 2012, https://doi.org/10.1002/app.37734
  2. Thermal stability of cocured blends of vinyl trimethoxysilane and aryl acetylene resins with different posttreatments vol.131, pp.8, 2013, https://doi.org/10.1002/app.40158
  3. Octakis(ethynyldimethylsiloxy) silsesquioxane: Synthesis and application in poly(silicane arylacetylene) resin vol.133, pp.43, 2016, https://doi.org/10.1002/app.44158
  4. Thermal evolution of ladder-like silsesquioxanes during formation of black glasses vol.130, pp.1, 2017, https://doi.org/10.1007/s10973-017-6249-9
  5. Synthesis and properties of poly(dimethylsilylene-ethynylene-phenoxyphenoxyphenylene-ethynylene) vol.29, pp.5, 2017, https://doi.org/10.1177/0954008316655862
  6. Synthesis and Properties of Polymers with an Organosilicon–Acetylene Backbone vol.28, pp.5, 2018, https://doi.org/10.1007/s10904-018-0854-3
  7. Star-shaped arylacetylene resins derived from silicon vol.40, pp.8, 2010, https://doi.org/10.1515/polyeng-2020-0083
  8. Enhance high-temperature mechanical performance of a silicon-containing arylether arylacetylene resin with the aid of a terminal alkyne compound vol.28, pp.11, 2010, https://doi.org/10.1007/s10965-021-02775-9