References
- Howitz, K. T.; Bitterman, K. J.; Cohen, H. Y.; Lamming, D. W.;Lavu, S.; Wood, J. G.; Zipkin, R. E.; Chung, P.; Kisielewski, A.Nature 2003, 425, 191. https://doi.org/10.1038/nature01960
- Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.;Beecher, C. W. W.; Fong, H. H. S.; Farnsworth, N. R.; Kinghorn,A. D.; Mehta, R. C.; Moon, R. C.; Pezzuto, J. M. Science 1997,275, 218. https://doi.org/10.1126/science.275.5297.218
- Wu, C.-P.; Calcagno, A. M.; Hladky, S. B.; Ambudkar, S. V.; Barrand, M. A. FEBS J. 2005, 272, 4725. https://doi.org/10.1111/j.1742-4658.2005.04888.x
- Gledhill, J. R.; Montgomery, M. G.; Leslie, A. G. W.; Walker, J. E. Proc. Natl. Acad. Sci. U.S.A. 2007, 272, 4725.
- Song, S.; Lee, H.; Jin, Y.; Ha, Y. M.; Bae, S.; Chung, H. Y.; Suh, H.Bioorg. Med. Chem. Lett. 2007, 17, 461. https://doi.org/10.1016/j.bmcl.2006.10.025
- Robb. D. A. Tyrosinase In Copper Proteins and Copper Enzymes; Lontie, R., Ed.; CRC Press: Boca Raton, FL, 1984; Vol. 2, pp 207-240.
- Kim, Y. M.; Yun, J.; Lee, C. K.; Lee, H.; Min, K. R.; Kim, Y. J. Biol. Chem. 2002, 277, 16340. https://doi.org/10.1074/jbc.M200678200
- Meier, H.; Dullweber, U. Tetrahedron Lett. 1996, 37, 1191. https://doi.org/10.1016/0040-4039(95)02414-X
- Kim, S.; Ko, H.; Park, J. E.; Jung, S.; Lee, S. K.; Chun, Y.-J. J. Med. Chem. 2002, 45, 160. https://doi.org/10.1021/jm010298j
- Guiso, M.; Marra, C.; Farina, A. Tetrahedron Lett. 2002, 43, 597. https://doi.org/10.1016/S0040-4039(01)02227-4
- Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jager, W. Bioorg. Med. Chem. 2004, 12, 5571. https://doi.org/10.1016/j.bmc.2004.08.008
- Han, S. Y.; Lee, H. S.; Choi, D. H.; Hwang J. W.; Yang, D. M.;Jun, J.-G. Synth. Commun. 2009, 39, 1425. https://doi.org/10.1080/00397910802528944
- Guiso, M.; Marra, C.; Farina, A. Tetrahedron Lett. 2002, 43,597. https://doi.org/10.1016/S0040-4039(01)02227-4
- Choi, S. Z.; Jang, K. U.; Chung, S. H.; Park, S. H.; Kang,H. C.; Yang, E. Y.; Cho, H. J.; Lee, K. R. Arch Pharm. Res. 2005,28, 1027. https://doi.org/10.1007/BF02977396
- Ko, S. K.; Lee, S. M.; Whang, W. K. Arch Pharm. Res. 1999, 22, 401. https://doi.org/10.1007/BF02979065
- Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Phytochemistry 2004, 65, 1389. https://doi.org/10.1016/j.phytochem.2004.04.016
- Likhitwitayawuid, K.; Sritularak, B. J. Nat. Prod. 2001, 64, 1457. https://doi.org/10.1021/np0101806
- Shimizu, K.; Kondo, R.; Sakai, K. Planta Med. 2000,66, 11. https://doi.org/10.1055/s-2000-11113
- Lee, B. W.; Lee, J. H.; Gal, S. W.; Moon, Y. H.; Park, K. H. Biosci. Biotechnol. Biochem. 2006, 70, 427. https://doi.org/10.1271/bbb.70.427
Cited by
- vol.31, pp.5, 2011, https://doi.org/10.3109/10799893.2011.607170
- Pharmacometrics of 3-Methoxypterostilbene: A Component of Traditional Chinese Medicinal Plants vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/261468
- Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/645257
- vol.76, pp.4, 2013, https://doi.org/10.1021/np300893n
- Cloning, Expression Pattern Analysis and Subcellular Localization of Resveratrol Synthase Gene in Peanut (<i>Arachis hypogaea</i> L.) vol.05, pp.24, 2014, https://doi.org/10.4236/ajps.2014.524378
- Resveratrol, piceatannol, and isorhapontigenin from Norway spruce (Picea abies) debarking wastewater as inhibitors on the growth of nine species of wood-decaying fungi vol.50, pp.3, 2016, https://doi.org/10.1007/s00226-016-0814-4
- Dehydrogenative Formation of Resorcinol Derivatives Using Pd/C–Ethylene Catalytic System vol.82, pp.5, 2017, https://doi.org/10.1021/acs.joc.6b03037
- In Vitro Estrogenic and Breast Cancer Inhibitory Activities of Chemical Constituents Isolated from Rheum undulatum L. vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051215
- Syntheses of Resveratrol Analogues and Evaluation of Their Antioxidant Activity vol.35, pp.5, 2010, https://doi.org/10.5012/bkcs.2014.35.5.1549
- Synthesis of Piceatannol, an Oxygenated Analog of Resveratrol vol.11, pp.7, 2016, https://doi.org/10.1177/1934578x1601100732
- An Efficient Synthesis of Deoxyrhapontigenin-3-O-β-D-glucuronide, a Brain-Targeted Derivative of Dietary Resveratrol, and Its Precursor 4′-O-Me-Resveratrol vol.4, pp.5, 2010, https://doi.org/10.1021/acsomega.9b00722
- Inhibition of Pancreatic α-amylase by Resveratrol Derivatives: Biological Activity and Molecular Modelling Evidence for Cooperativity between Viniferin Enantiomers vol.24, pp.18, 2010, https://doi.org/10.3390/molecules24183225
- Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity vol.74, pp.1, 2020, https://doi.org/10.1007/s11418-019-01335-2
- Resveratrol Derivatives as Potential Treatments for Alzheimer’s and Parkinson’s Disease vol.12, pp.None, 2010, https://doi.org/10.3389/fnagi.2020.00103
- Enzymatic synthesis of a catecholic polyphenol product with excellent antioxidant activity vol.38, pp.6, 2020, https://doi.org/10.1080/10242422.2020.1756789
- Cassane-type diterpenoids from Caesalpinia latisiliqua (Cav.) Hattink vol.47, pp.None, 2022, https://doi.org/10.1016/j.phytol.2021.11.011