DOI QR코드

DOI QR Code

Intramolecular Ion-Molecule Reactions within Ti+(CH3COCH3)n Heteroclusters: Oxidation Pathway via C=O Bond Activation

  • Koo, Young-Mi (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University, Iksan) ;
  • Hong, Ki-Ryong (Department of Chemistry and Chemical Institute of Functional Materials, Pusan National University) ;
  • Kim, Tae-Kyu (Department of Chemistry and Chemical Institute of Functional Materials, Pusan National University) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University, Iksan)
  • Published : 2010.04.20

Abstract

A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within $Ti^+(CH_3COCH_3)_n$ heterocluster ions. The reactions of $Ti^+$ with $CH_3COCH_3$ clusters were found to be dominated exclusively by an oxidation reaction, which produced $TiO^+(CH_3COCH_3)_n$ clusters. These ions were attributed to the insertion of a $Ti^+$ ion into the C=O bond of the acetone molecule within the heteroclusters, followed by $C_3H_6$ elimination. The mass spectra also indicated the formation of minor sequences of heterocluster ions with the formulas $Ti^+(C_3H_4O)(CH_3COCH_3)_n$ and $TiO^+(OH)(CH_3COCH_3)_n$, which could be attributed to C-H bond insertion followed by $H_2$ elimination and to the sequential OH abstraction by the $TiO^+$ ion, respectively. Density functional theory calculations were carried out to model the structures and binding energies of both the association complexes and the relevant reaction products. The reaction pathways and energetics of the $TiO^+\;+\;CH_2CHCH_3$ product channel are presented.

Keywords

References

  1. Bohme, D. K.; Schwartz, H. Angew. Chem. Int. Ed. 2005, 44, 2336. https://doi.org/10.1002/anie.200461698
  2. Advances in Metal and Semiconductor Clusters; Duncan M. A.,Ed.; Elsevier: Amsterdam, 2001; Vol. 5.
  3. Liu, H.; Hu, Y.; Yang, S.; Guo, W.; Fu, Q.; Wang, L. J. Phys. Chem. A 2006, 110, 4389. https://doi.org/10.1021/jp060002r
  4. Velasquez, J.; Pillai, E. D.; Carnegie, P. D.; Duncan, M. A. J. Phys. Chem. A 2006, 110, 2325. https://doi.org/10.1021/jp0574899
  5. Zheng, G.; Kemper, P. R.; Bowers, M. Int. J. Mass Spectrom. 2001, 265, 210.
  6. Lee, M. A.; Nam, S. H.; Park, H. S.; Cheong, N. R.; Ryu, S.; Song,J. K.; Park, S. M. Bull. Korean Chem. Soc. 2008, 29, 2109. https://doi.org/10.5012/bkcs.2008.29.11.2109
  7. Choi, S.-S.; Ha, S.-H. Bull. Korean Chem. Soc. 2007, 28, 2508. https://doi.org/10.5012/bkcs.2007.28.12.2508
  8. Koo, Y. M.; Kim, J. H.; Lee, H.; Jung, K. W. J. Phys. Chem. A 2002,106, 2465. https://doi.org/10.1021/jp0135205
  9. Koo, Y. M.; An, J. H.; Yoo, S. K.; Jung, K. W. Int. J. Mass Spectrom.2003, 226, 305. https://doi.org/10.1016/S1387-3806(03)00022-8
  10. Koo, Y. M.; Kim, M. K.; Jung, K. W. Int. J. Mass Spectrom. 2005, 243, 97. https://doi.org/10.1016/j.ijms.2004.12.032
  11. Koo, Y. M.; Kim, T. K.; Jung, D. W.; Jung, K. W. J. Phys. Chem. A 2006, 110, 13724. https://doi.org/10.1021/jp064596+
  12. Kim, T. K.; Koo, Y. M.; Jung, D. W.; Jung, K. W. Bull. Korean Chem. Soc. 2008, 29, 4.
  13. Kim, T. K.; Koo, Y. M.; Jung, D. W.; Jung, K. W. Bull. Korean Chem. Soc. 2008, 29, 2183. https://doi.org/10.5012/bkcs.2008.29.11.2183
  14. Burnier, R. C.; Byrd, G. D.; Freiser, B. S. Anal. Chem. 1980, 52,1641. https://doi.org/10.1021/ac50061a026
  15. Hanratty, M. A.; Beauchamp, J. L.; Illies, A. J.; van Koppen, P.; Bowers, M. T. J. Am. Chem. Soc. 1988, 110, 1. https://doi.org/10.1021/ja00209a001
  16. Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 163. https://doi.org/10.1021/ja00469a028
  17. Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1984, 106,8117. https://doi.org/10.1021/ja00338a019
  18. Schilling, J. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1988, 110, 15. https://doi.org/10.1021/ja00209a002
  19. Zhao, L. M.; Zhang, R. R.; Guo, W. Y.; Lu, X. Q. Chem. Phys. Lett. 2006, 431, 56. https://doi.org/10.1016/j.cplett.2006.09.079
  20. Ding, N.; Zhang, S. G.; Chen, X. X. Chem. Phys. Lett. 2008, 458, 33.
  21. Wang, Y. C.; Liu, Z. Y.; Geng, Z. Y.; Yang, X. Y. Chem. Phys. Lett.2006, 427, 271. https://doi.org/10.1016/j.cplett.2006.06.102
  22. Chen, X. F.; Guo, W. Y.; Zhao, L. M.; Fu, Q. T. Chem. Phys. Lett.2006, 432, 27. https://doi.org/10.1016/j.cplett.2006.10.031
  23. Becke, D. A. J. Chem. Phys. 1993, 98, 1372.
  24. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1990, 94, 5523.
  25. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. https://doi.org/10.1063/1.456010
  26. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. https://doi.org/10.1021/j100377a021
  27. Gaussian 03, R. E., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery,Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian,Inc., Wallingford CT, 2004.
  28. Koppel, I. A.; Molder, U. H.; Pikver, R. J. Org. React. Tartu. 1983,20, 45.
  29. Pilgram, J. S.; Yeh, C. S.; Berry, K. R.; Duncan, M. A. J. Chem. Phys. 1994, 100, 7945. https://doi.org/10.1063/1.466840
  30. Weis, P.; Kemper, P. R.; Bower, M. T. J. Phys. Chem. A 1997,101, 8207. https://doi.org/10.1021/jp9717249
  31. Chase, P. M. W.; Curnutt, J. L.; Prophet, H.; McDonald, R. A.;Syverud, A. N. J. Phys. Chem. Ref. Data 1975, 4, 1. https://doi.org/10.1063/1.555517
  32. Clemmer, D. E.; Elking, J. L.; Aristov, N.; Armentrout, P. B. J. Chem. Phys. 1991, 95, 3387. https://doi.org/10.1063/1.460844
  33. Misaizu, F.; Sanekata, M.; Fuke, K.; Iwata, S. J. Chem. Phys. 1994,100, 1161. https://doi.org/10.1063/1.466646
  34. Lu, W.; Yang, S. J. Phys. Chem. A 1998, 102, 825. https://doi.org/10.1021/jp9728969
  35. Byrd, G. D.; Burnier, R. C.; Freiser, B. S. J. Am. Chem. Soc. 1982,104, 3565. https://doi.org/10.1021/ja00377a004
  36. Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 1209. https://doi.org/10.1021/j100316a040
  37. Moore, C. E. ATOMIC ENERGY LEVELS; NSRD-NBS, USA,US Government Printing Office: Washington, D. C., 1971; Vol. 1.
  38. Schoöder, D.; Schwarz, H. Angew. Chem. Int. Ed. 1995, 34, 1973. https://doi.org/10.1002/anie.199519731
  39. Shiota, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2000, 122, 12317. https://doi.org/10.1021/ja0017965
  40. Sicilia, E.; Russo, N. J. Am. Chem. Soc. 2002, 124, 1471. https://doi.org/10.1021/ja0112487

Cited by

  1. with Fluorinated Acetone in the Gas Phase vol.56, pp.1, 2012, https://doi.org/10.5012/jkcs.2012.56.1.014
  2. C–O Bond Cleavage of Dimethyl Ether by Transition Metal Ions: A Systematic Study on Catalytic Properties of Metals and Performance of DFT Functionals vol.117, pp.24, 2013, https://doi.org/10.1021/jp312690e