References
- Schreiber, S. L. Science 2000, 287, 1964. https://doi.org/10.1126/science.287.5460.1964
- Kappe, C. O. Multicomponent Reactions; Zhu, J., Bienayme, H.,Eds.; Wiley-VCH: Weinheim, 2005; pp 95-120.
- Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J.2000, 6, 3321. https://doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A
- Kappe, C. O. Tetrahedron 1993, 49, 6937. https://doi.org/10.1016/S0040-4020(01)87971-0
- Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. https://doi.org/10.1016/S0223-5234(00)01189-2
- Ghorab, M. M.; Abdel-Gawad, S. M.; El-Gaby, M. S. A. Farmaco2000, 55, 249. https://doi.org/10.1016/S0014-827X(00)00029-X
- Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645. https://doi.org/10.1016/j.ejmech.2009.02.021
- Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber,S. L.; Mitchison, T. J. Science 1999, 286, 971. https://doi.org/10.1126/science.286.5441.971
- Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
- Hu, E. H.; Sidler, D. R.; Dolling, U.-H. J. Org. Chem. 1998, 63, 3454. https://doi.org/10.1021/jo970846u
- Lu, J.; Bai, Y. Synthesis 2002, 466.
- Folkers, K.; Harwood, H. J.; Johnson, T. B. J. Am. Chem. Soc.1932, 54, 3751. https://doi.org/10.1021/ja01348a040
- Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 2886. https://doi.org/10.1021/ja01334a043
- Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3784. https://doi.org/10.1021/ja01336a054
- Hassani, Z.; Islami, M. R.; Kalantari, M. Bioorg. Med. Chem. Lett.2006, 16, 4479. https://doi.org/10.1016/j.bmcl.2006.06.038
- Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Fard, L. A. B. Tetrahedron Lett. 2003, 44, 2889. https://doi.org/10.1016/S0040-4039(03)00436-2
- Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801. https://doi.org/10.1016/S0040-4020(02)00455-6
- Ananda Kumar, K.; Kasthuraiah, M.; Suresh Reddy, C.; DevendranathReddy, C. Tetrahedron Lett. 2001, 42, 7873. https://doi.org/10.1016/S0040-4039(01)01603-3
- Adibi, H.; Samimi, K. A.; Beygzadeh, M. Catal. Commun. 2007, 8, 2119. https://doi.org/10.1016/j.catcom.2007.04.022
- Ramalingan, C.; Kwak, Y. W. Tetrahedron 2008, 64, 5023. https://doi.org/10.1016/j.tet.2008.03.078
- Sabitha, G.; Kiran Kumar Reddy, G. S.; Bhaskar Reddy, K.;Yadav, J. S. Tetrahedron Lett. 2003, 44, 6497. https://doi.org/10.1016/S0040-4039(03)01564-8
- Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. J. Mol. Catal. A: Chem. 2007, 271, 14. https://doi.org/10.1016/j.molcata.2007.02.021
- Ramalingam, S.; Kumar, P. Synth. Commun. 2009, 39, 1299. https://doi.org/10.1080/00397910802519174
- Jin, T.; Zhang, S.; Li, T. Synth. Commun. 2002, 32, 1847. https://doi.org/10.1081/SCC-120004068
- Aridoss, G.; Amirthaganesan, S.; Ashok Kumar, N.; Kim, J. T.; Lim, K. T.; Kabilan, S.; Jeong, Y. T. Bioorg. Med. Chem. Lett. 2008, 18, 6542. https://doi.org/10.1016/j.bmcl.2008.10.045
- Aridoss, G.; Amirthaganesan, S.; Kim, M. S.; Kim, J. T.; Jeong, Y.T. Eur. J. Med. Chem. 2009, 44, 4199. https://doi.org/10.1016/j.ejmech.2009.05.015
- Tajbakhsh, M.; Mohajeranim, B.; Heravi, M. M.; Ahmadi, A. N.J. Mol. Catal. A: Chem. 2005, 236, 216. https://doi.org/10.1016/j.molcata.2005.04.033
- Heravi, M. M.; Derikvand, F.; Bamoharram, F. F. J. Mol. Catal. A: Chem. 2005, 242, 173. https://doi.org/10.1016/j.molcata.2005.08.009
- Wannberg, J.; Dallinger, D.; Kappe, C. O.; Larhed, M. J. Comb. Chem. 2005, 7, 574. https://doi.org/10.1021/cc049816c
- Hegedus, A.; Hell, Z.; Vígh, I. Synth. Commun. 2006, 36, 129. https://doi.org/10.1080/00397910500330858
- Hojatollah, S.; Qing-Xiang, G. Chin. J. Chem. 2005, 23, 91. https://doi.org/10.1002/cjoc.200590021
- Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J. M. J. J. Comb. Chem. 1999, 1, 105. https://doi.org/10.1021/cc980014p
- Singh, K.; Arora, D.; Singh, S. Tetrahedron Lett. 2006, 47, 4205. https://doi.org/10.1016/j.tetlet.2006.04.061
- Liu, C.; Wang, J.; Li, Y. J. Mol. Catal. A: Chem. 2006, 258, 367. https://doi.org/10.1016/j.molcata.2006.07.037
- Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F. Catal. Commun.2006, 7, 373. https://doi.org/10.1016/j.catcom.2005.12.007
- Hsu, T. J.; Tan, C. S. Polymer 2001, 42, 5143. https://doi.org/10.1016/S0032-3861(01)00006-4
- Kappe, C. O. J. Org. Chem. 1997, 62, 7201. https://doi.org/10.1021/jo971010u
Cited by
- Pineapple Juice as a Natural Catalyst: An Excellent Catalyst for Biginelli Reaction vol.01, pp.03, 2011, https://doi.org/10.4236/ijoc.2011.13019
- Synthesis of New Pyrimidine, Quinazoline and Diazatricyclo Derivatives by Multicomponent Reaction and Evaluation of Their Biological Activity vol.187, pp.6, 2012, https://doi.org/10.1080/10426507.2011.645175
- Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction vol.2012, pp.1537-744X, 2012, https://doi.org/10.1100/2012/908702
- )-ones Using Quaternary Ammonium-Treated Clay in Water vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/605324
- Novel and Chemoselective Dehydrogenation of 3,4-Dihydropyrimidin-2(1H)-ones with 1,4-Bis(triphenylphosphonium)-2-butene Peroxodisulfate vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1751
- A Green Recyclable Poly(4-vinylpyridine)-Supported Copper Iodide Nanoparticles Catalyst for the Multicomponent Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones vol.57, pp.2, 2013, https://doi.org/10.5012/jkcs.2013.57.2.169
- Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation vol.38, pp.8, 2014, https://doi.org/10.1039/C3NJ01618H
- Decoration of multi-walled carbon nanotubes with NiO nanoparticles and investigation on their catalytic activity to synthesize pyrimidinone heterocycles vol.12, pp.1, 2015, https://doi.org/10.1007/s13738-014-0468-9
- ZSM-5 Catalyzed Solvent Free Ecofriendly Synthesis of Substituted Pyrimidine Derivatives vol.48, pp.10, 2015, https://doi.org/10.1007/s11094-015-1170-7
- N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (DHPMs) via the Biginelli reaction vol.117, pp.1, 2016, https://doi.org/10.1007/s11144-015-0931-3
- Investigating the effect of immobilization of yttrium-Schiff base onto magnetite nanoparticles: enhanced catalytic activity in the synthesis of dihydropyrimidinones under solvent-free conditions vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2137-8
- Green High-Yielding One-Pot Approach to Biginelli Reaction under Catalyst-Free and Solvent-Free Ball Milling Conditions vol.6, pp.12, 2016, https://doi.org/10.3390/app6120431
- )-ones vol.50, pp.5, 2018, https://doi.org/10.1080/00304948.2018.1525672
- Green synthesis and structural characterization of novel N1-substituted 3,4-dihydropyrimidin-2(1H)-ones vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2018-0074
- One-pot Synthesis of Dihydropyrimidinones Using Polyoxometalate Tri-supported Transition Metal Complexes vol.55, pp.4, 2010, https://doi.org/10.5012/jkcs.2011.55.4.666
- Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions vol.352, pp.None, 2010, https://doi.org/10.1016/j.molcata.2011.09.009
- Sulfonated carbon/silica composite functionalized Lewis acids for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles, 3,4-dihydropyrimidin-2(1H)-ones and for Michael addition of indole to vol.352, pp.None, 2012, https://doi.org/10.1016/j.molcata.2011.10.016
- An appropriate one-pot synthesis of dihydropyrimidinones catalyzed by heteropoly acid supported on zeolite: An efficient and reusable catalyst for the Biginelli reaction vol.15, pp.5, 2010, https://doi.org/10.1016/j.crci.2011.11.015
- Efficient and facile synthesis of heterocycles and their mechanistic consideration using kaolin vol.3, pp.25, 2010, https://doi.org/10.1039/c3ra40993g
- Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction vol.127, pp.9, 2015, https://doi.org/10.1007/s12039-015-0919-6
- One-pot three component synthesis of substituted dihydropyrimidinones using fruit juices as biocatalyst and their biological studies vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0238092
- A Brønsted acidic ionic liquid anchored to magnetite nanoparticles as a novel recoverable heterogeneous catalyst for the Biginelli reaction vol.11, pp.13, 2010, https://doi.org/10.1039/d0ra09929e