DOI QR코드

DOI QR Code

A Convenient One-Pot Biginelli Reaction Catalyzed by Y(OAc)3: An Improved Protocol for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Their Sulfur Analogues

  • Aridoss, Gopalakrishnan (Division of Image Science and Information Engineering, Pukyong National University) ;
  • Jeong, Yeon-Tae (Division of Image Science and Information Engineering, Pukyong National University)
  • Published : 2010.04.20

Abstract

Yttrium(III) acetate hydrate-catalyzed novel synthesis of 3,4-dihydropyrimidin-2(1H)-(thio)one derivatives was achieved through one-pot three-component condensation of diversified aldehydes, $\beta$-ketoesters and urea or N-methylurea or thiourea with a molar ratio of 1:1:1.4. In comparison to the classical Biginelli approach, this catalytic method has the advantages of short reaction time and improved product yield.

Keywords

References

  1. Schreiber, S. L. Science 2000, 287, 1964. https://doi.org/10.1126/science.287.5460.1964
  2. Kappe, C. O. Multicomponent Reactions; Zhu, J., Bienayme, H.,Eds.; Wiley-VCH: Weinheim, 2005; pp 95-120.
  3. Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J.2000, 6, 3321. https://doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A
  4. Kappe, C. O. Tetrahedron 1993, 49, 6937. https://doi.org/10.1016/S0040-4020(01)87971-0
  5. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. https://doi.org/10.1016/S0223-5234(00)01189-2
  6. Ghorab, M. M.; Abdel-Gawad, S. M.; El-Gaby, M. S. A. Farmaco2000, 55, 249. https://doi.org/10.1016/S0014-827X(00)00029-X
  7. Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645. https://doi.org/10.1016/j.ejmech.2009.02.021
  8. Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber,S. L.; Mitchison, T. J. Science 1999, 286, 971. https://doi.org/10.1126/science.286.5441.971
  9. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
  10. Hu, E. H.; Sidler, D. R.; Dolling, U.-H. J. Org. Chem. 1998, 63, 3454. https://doi.org/10.1021/jo970846u
  11. Lu, J.; Bai, Y. Synthesis 2002, 466.
  12. Folkers, K.; Harwood, H. J.; Johnson, T. B. J. Am. Chem. Soc.1932, 54, 3751. https://doi.org/10.1021/ja01348a040
  13. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 2886. https://doi.org/10.1021/ja01334a043
  14. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3784. https://doi.org/10.1021/ja01336a054
  15. Hassani, Z.; Islami, M. R.; Kalantari, M. Bioorg. Med. Chem. Lett.2006, 16, 4479. https://doi.org/10.1016/j.bmcl.2006.06.038
  16. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Fard, L. A. B. Tetrahedron Lett. 2003, 44, 2889. https://doi.org/10.1016/S0040-4039(03)00436-2
  17. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801. https://doi.org/10.1016/S0040-4020(02)00455-6
  18. Ananda Kumar, K.; Kasthuraiah, M.; Suresh Reddy, C.; DevendranathReddy, C. Tetrahedron Lett. 2001, 42, 7873. https://doi.org/10.1016/S0040-4039(01)01603-3
  19. Adibi, H.; Samimi, K. A.; Beygzadeh, M. Catal. Commun. 2007, 8, 2119. https://doi.org/10.1016/j.catcom.2007.04.022
  20. Ramalingan, C.; Kwak, Y. W. Tetrahedron 2008, 64, 5023. https://doi.org/10.1016/j.tet.2008.03.078
  21. Sabitha, G.; Kiran Kumar Reddy, G. S.; Bhaskar Reddy, K.;Yadav, J. S. Tetrahedron Lett. 2003, 44, 6497. https://doi.org/10.1016/S0040-4039(03)01564-8
  22. Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. J. Mol. Catal. A: Chem. 2007, 271, 14. https://doi.org/10.1016/j.molcata.2007.02.021
  23. Ramalingam, S.; Kumar, P. Synth. Commun. 2009, 39, 1299. https://doi.org/10.1080/00397910802519174
  24. Jin, T.; Zhang, S.; Li, T. Synth. Commun. 2002, 32, 1847. https://doi.org/10.1081/SCC-120004068
  25. Aridoss, G.; Amirthaganesan, S.; Ashok Kumar, N.; Kim, J. T.; Lim, K. T.; Kabilan, S.; Jeong, Y. T. Bioorg. Med. Chem. Lett. 2008, 18, 6542. https://doi.org/10.1016/j.bmcl.2008.10.045
  26. Aridoss, G.; Amirthaganesan, S.; Kim, M. S.; Kim, J. T.; Jeong, Y.T. Eur. J. Med. Chem. 2009, 44, 4199. https://doi.org/10.1016/j.ejmech.2009.05.015
  27. Tajbakhsh, M.; Mohajeranim, B.; Heravi, M. M.; Ahmadi, A. N.J. Mol. Catal. A: Chem. 2005, 236, 216. https://doi.org/10.1016/j.molcata.2005.04.033
  28. Heravi, M. M.; Derikvand, F.; Bamoharram, F. F. J. Mol. Catal. A: Chem. 2005, 242, 173. https://doi.org/10.1016/j.molcata.2005.08.009
  29. Wannberg, J.; Dallinger, D.; Kappe, C. O.; Larhed, M. J. Comb. Chem. 2005, 7, 574. https://doi.org/10.1021/cc049816c
  30. Hegedus, A.; Hell, Z.; Vígh, I. Synth. Commun. 2006, 36, 129. https://doi.org/10.1080/00397910500330858
  31. Hojatollah, S.; Qing-Xiang, G. Chin. J. Chem. 2005, 23, 91. https://doi.org/10.1002/cjoc.200590021
  32. Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J. M. J. J. Comb. Chem. 1999, 1, 105. https://doi.org/10.1021/cc980014p
  33. Singh, K.; Arora, D.; Singh, S. Tetrahedron Lett. 2006, 47, 4205. https://doi.org/10.1016/j.tetlet.2006.04.061
  34. Liu, C.; Wang, J.; Li, Y. J. Mol. Catal. A: Chem. 2006, 258, 367. https://doi.org/10.1016/j.molcata.2006.07.037
  35. Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F. Catal. Commun.2006, 7, 373. https://doi.org/10.1016/j.catcom.2005.12.007
  36. Hsu, T. J.; Tan, C. S. Polymer 2001, 42, 5143. https://doi.org/10.1016/S0032-3861(01)00006-4
  37. Kappe, C. O. J. Org. Chem. 1997, 62, 7201. https://doi.org/10.1021/jo971010u

Cited by

  1. Pineapple Juice as a Natural Catalyst: An Excellent Catalyst for Biginelli Reaction vol.01, pp.03, 2011, https://doi.org/10.4236/ijoc.2011.13019
  2. Synthesis of New Pyrimidine, Quinazoline and Diazatricyclo Derivatives by Multicomponent Reaction and Evaluation of Their Biological Activity vol.187, pp.6, 2012, https://doi.org/10.1080/10426507.2011.645175
  3. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction vol.2012, pp.1537-744X, 2012, https://doi.org/10.1100/2012/908702
  4. )-ones Using Quaternary Ammonium-Treated Clay in Water vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/605324
  5. Novel and Chemoselective Dehydrogenation of 3,4-Dihydropyrimidin-2(1H)-ones with 1,4-Bis(triphenylphosphonium)-2-butene Peroxodisulfate vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1751
  6. A Green Recyclable Poly(4-vinylpyridine)-Supported Copper Iodide Nanoparticles Catalyst for the Multicomponent Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones vol.57, pp.2, 2013, https://doi.org/10.5012/jkcs.2013.57.2.169
  7. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation vol.38, pp.8, 2014, https://doi.org/10.1039/C3NJ01618H
  8. Decoration of multi-walled carbon nanotubes with NiO nanoparticles and investigation on their catalytic activity to synthesize pyrimidinone heterocycles vol.12, pp.1, 2015, https://doi.org/10.1007/s13738-014-0468-9
  9. ZSM-5 Catalyzed Solvent Free Ecofriendly Synthesis of Substituted Pyrimidine Derivatives vol.48, pp.10, 2015, https://doi.org/10.1007/s11094-015-1170-7
  10. N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (DHPMs) via the Biginelli reaction vol.117, pp.1, 2016, https://doi.org/10.1007/s11144-015-0931-3
  11. Investigating the effect of immobilization of yttrium-Schiff base onto magnetite nanoparticles: enhanced catalytic activity in the synthesis of dihydropyrimidinones under solvent-free conditions vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2137-8
  12. Green High-Yielding One-Pot Approach to Biginelli Reaction under Catalyst-Free and Solvent-Free Ball Milling Conditions vol.6, pp.12, 2016, https://doi.org/10.3390/app6120431
  13. )-ones vol.50, pp.5, 2018, https://doi.org/10.1080/00304948.2018.1525672
  14. Green synthesis and structural characterization of novel N1-substituted 3,4-dihydropyrimidin-2(1H)-ones vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2018-0074
  15. One-pot Synthesis of Dihydropyrimidinones Using Polyoxometalate Tri-supported Transition Metal Complexes vol.55, pp.4, 2010, https://doi.org/10.5012/jkcs.2011.55.4.666
  16. Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions vol.352, pp.None, 2010, https://doi.org/10.1016/j.molcata.2011.09.009
  17. Sulfonated carbon/silica composite functionalized Lewis acids for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles, 3,4-dihydropyrimidin-2(1H)-ones and for Michael addition of indole to vol.352, pp.None, 2012, https://doi.org/10.1016/j.molcata.2011.10.016
  18. An appropriate one-pot synthesis of dihydropyrimidinones catalyzed by heteropoly acid supported on zeolite: An efficient and reusable catalyst for the Biginelli reaction vol.15, pp.5, 2010, https://doi.org/10.1016/j.crci.2011.11.015
  19. Efficient and facile synthesis of heterocycles and their mechanistic consideration using kaolin vol.3, pp.25, 2010, https://doi.org/10.1039/c3ra40993g
  20. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction vol.127, pp.9, 2015, https://doi.org/10.1007/s12039-015-0919-6
  21. One-pot three component synthesis of substituted dihydropyrimidinones using fruit juices as biocatalyst and their biological studies vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0238092
  22. A Brønsted acidic ionic liquid anchored to magnetite nanoparticles as a novel recoverable heterogeneous catalyst for the Biginelli reaction vol.11, pp.13, 2010, https://doi.org/10.1039/d0ra09929e