Abstract
Recently, keyword spotting system is greatly in the limelight as UI(User Interface) technology of ubiquitous home network system. Keyword spotting system is vulnerable to non-stationary noises such as TV, radio, dialogue. Especially, speech recognition rate goes down drastically under the embedded DSP(Digital Signal Processor) environments because it is relatively low in the computational capability to process input speech in real-time. In this paper, we propose a new keyword spotting system using the call-command method, which is consisted of small number of recognition networks. We select the call-command such as 'narae', 'home manager' and compose the small network as a token which is consisted of silence with the noise and call commands to carry the real-time recognition continuously for input speeches.
최근 핵심어 검출 시스템은 유비쿼터스 홈네트워크의 UI(User Interface) 기술로써 각광받고 있다. 핵심어 검출 시스템은 TV, 라디오, 떠드는 소리 등과 같은 동적 생활 잡음에 매우 취약하다. 특히, 실제 임베디드 DSP(Digital Signal Processor) 환경에서는 상대적으로 CPU(Central Processing Unit) 연산능력이 떨어지므로, 실시간으로 입력되는 음성을 인식하기가 어려워 인식율은 급격히 하락하게 된다. 본 논문은 임베디드 DSP 환경에서 원활한 연속음성인식을 수행하기 위하여 '나래야', '홈매니저'등과 같은 호출명령어를 선정하고 잡음을 포함한 묵음구간과 호출명령어로 구성된 최소의 인식네트워크를 토큰으로 구성하여 입력된 음성에 대해 실시간 음성인식을 계속적으로 수행한다.