Multi-Channel Analog Front-End for Auditory Nerve Signal Detection

청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드

  • Cheon, Ji-Min (Department of Electrical and Electronic Eng., Yonsei University) ;
  • Lim, Seung-Hyun (Department of Electrical and Electronic Eng., Yonsei University) ;
  • Lee, Dong-Myung (Department of Electrical and Electronic Eng., Yonsei University) ;
  • Chang, Eun-Soo (Department of Electrical and Electronic Eng., Yonsei University) ;
  • Han, Gun-Hee (Department of Electrical and Electronic Eng., Yonsei University)
  • 천지민 (연세대학교 전기전자공학과) ;
  • 임승현 (연세대학교 전기전자공학과) ;
  • 이동명 (연세대학교 전기전자공학과) ;
  • 장은수 (연세대학교 전기전자공학과) ;
  • 한건희 (연세대학교 전기전자공학과)
  • Published : 2010.01.25

Abstract

In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

청신경의 이상으로 발생하는 감각신경성 난청의 경우, 달팽이관이나 청각신경에 전극을 이식하여 전기자극을 가함으로써 청지각을 살릴 수 있다. 이를 위해 우선적으로, 각 청각신경들이 담당하여 인지할 수 있는 소리의 주파수 분포를 표시한 음계소지도를 파악해야 한다. 본 논문에서는 청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드 회로를 제안한다. 제안된 아나로그 프론트엔드의 각 채널은 AC 커플링 회로, 저 전력 4차 Gm-C LPF와 단일 기울기 ADC로 이루어진다. AC 커플링 회로는 청각신호의 불확실한 DC 전압 레벨을 제거하고 AC 신호만 전달한다. Gm-C LPF는 청각신호의 대역폭을 고려하여 설계 되었으며, 플로팅-게이트 기법이 적용된 OTA를 사용하였다. 채널별 ADC를 구현하기 위해서, 최소의 면적으로 구현할 수 있는 단일 기울기 ADC 구조를 사용하였다. 측정 결과, AC 커플링 회로와 4차 Gm-C LPF는 100 Hz - 6.95 kHz의 대역폭을 가지며, 단일 기울기 ADC는 7.7 비트의 유효 해상도를 가진다. 그리고, 채널 당 $12\;{\mu}W$의 전력이 소모 되었다. 전원 전압은 3.0 V가 공급되었고, 코어는 $2.6\;mm\;{\times}\;3.7\;mm$의 실리콘 면적을 차지한다. 제안된 아나로그 프론트엔드는 1-poly 4-metal $0.35-{\mu}m$ CMOS 공정에서 제작 되었다.

Keywords

References

  1. 박기현, 정연훈, '전음성 난청의 치료,' Journal of Clinical Otolaryngol, 제14권, 제2호, pp. 188-197, 2003
  2. F. -G. Zeng, A. Popper, and R. Fay, Cochlear implants: electric hearing and auditory prostheses, New York, NY: Springer-Verlag, 2004.
  3. D. J. Anderson, 'Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research,' Hearing Research, vol. 242, no. 1-2, pp. 31-41, January 2008 https://doi.org/10.1016/j.heares.2008.01.010
  4. J. Wu, W. -F. Feng, and W. C. Tang, 'A multi-channel low-power circuit for implantable auditory neural recording microsystems,' in Proc. International Conference of Biomedical Engineering, Paper #4B1-05, CD-ROM, Singapore, December, 2005
  5. R. R. Harrison et al., 'A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System,' IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123-133, January 2007 https://doi.org/10.1109/JSSC.2006.886567
  6. D. Oertel, R. Bal, S. M. Gardner, P. H. Smith, and P. X. Joris, 'Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus,' Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11773-11779, October, 2004
  7. K. Najafi and K. D. Wise, 'An implantable multielectrode array with on-chip signal processing,' IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 1035-1044, December 1986 https://doi.org/10.1109/JSSC.1986.1052646
  8. T. Jochum, T. Denison, and P. Wolf, 'Integrated circuit amplifiers for multi-electrode intracortical recording,' Journal of Neural Engineering, vol. 6, no. 1, pp. 1-26, January 2009
  9. A. Bashirotto, D. Bijno, R. Castello, and F. Montecchi, 'A 1V $1.2{\mu}W$ 4th order bandpass switched-opamp SC filter for a cardiac pacer sensing stage,' in Proc. ISCAS, vol. 3, pp. 173-176, Geneva, May 2000
  10. B. Kim, Y. Chae, and G. Han, 'A 1-V 0.4-uW SC Band-Pass Filter for Implantable Cardiac Pacemaker Applications,' in Proc. Int. SoC Design Conf., pp. 11-14, Seoul, Korea, October 2006.
  11. S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, 'A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,' IEEE Trans. Circuits Syst.-II, vol. 47, no. 12, pp. 1391-1398, December 2000 https://doi.org/10.1109/82.899631
  12. A. Gerosa, A. Maniero, and A. Neviani, 'A fully integrated Dual-channel Log-Domain Programmable Preamplifier and Filter for an Implantable Cardiac Pacemaker,' IEEE Trans. Circuits Syst.-I, vol. 51, no. 10, pp. 1916-1925, October 2004 https://doi.org/10.1109/TCSI.2004.835027
  13. P. Garde, 'Transconductance cancellation for operational amplifiers,' IEEE J. Solid-State Circuits, vol. SC-12, pp. 310-311, June 1977