The Studies on Identification of Lophatherum gracile(淡竹葉) Using AFLP fingerprinting Methods

AFLP fingerprinting법을 이용한 담죽엽의 감별법 연구

  • Received : 2010.05.26
  • Accepted : 2010.10.06
  • Published : 2011.12.31

Abstract

Lophatheri Herba is the aerial part of Lophatherum gracile Bronghiart(淡竹葉, Gramineae). 25~75 cm in length. Stem: cylindrical with nodes, empty inside, externally pale yellowish green. Leaf: dehiscent of lanceolate lamina, shrunken and rolled, 5~20 cm long, 10~35 mm wide; surface: pale green ~ yellowish green, parallel-formed with veins of square reticulate, more distinct of appearance on the lower surface. Banbusae Caulis In Taeniam is the stringy strip derived from the stem with the peeled-off epidermis of Phllostachys nigra Munro var. henosis Stapf, and Phllostachys bambusoides Siebold et Zuccarini(竹葉, Gramineae). Irregular in size and shape, thin plane ~ strip-shaped, sometimes powdery, sometimes 1~3 mm thick. Outer surface: pale green ~ yellowish green, sometimes grayish white L. gracile and P. nigra have different origins although they show similar morphologic features. We were able to distinguish between L. gracile and P. nigra which are almost indistinguishable through this study. AFLP(Amplifide Fragment Length Polymorphism) was more suitable for identifying differences between L. gracile and P. nigra in comparison with other genetic analysis using chemical analysis. Therefore. molecular biological methods are believed to be useful for discovering origins of herbal medicines.

Keywords

References

  1. 식품의약품안전청 (2007) 대한약전외한약(생약)규격집, 서울.
  2. 김창민, 신민교, 안덕균, 이경순, 중약대사전 (1997) 2: 883-884, 도서출판정담, 서울.
  3. 김정상 (2002) 죽력(Bambusae Caulis in Liquamen)의 투여량에 따른 생쥐의 항상화효소 활성과 간과 신장의 조직 병리학적 변화. Korean J. Electron Microscopy 32(4): 399-410.
  4. Ra, J., Lee, S., Kim, H. J., Jang, Y. P., Ahn, H. and Kim, J. (2010) Bambusae Caulis in Taeniam extract reduces ovalbumin-induced airway inflammation and T helper 2 responses in mice. Journal of Ethnopharmacology 128: 241-247. https://doi.org/10.1016/j.jep.2010.01.023
  5. Tragoonrung, S., Kanazin, V., Hayes, P. M. and Blake, T. K. (1992) Sequence tagged site failitated PCR for barley genome mapping. Theoretical and Applied Genetics 84: 1002-1008.
  6. Williams, G. K., Hanafey, M. K., Rafalski, J. A. and Tingey, S. V. (1992) Genetic analysis using random amplified polymorphic DNA markers. Method in Enz. 217: 704-741.
  7. Rajapakse, S., Belthoff, L. E., He, G., Estager, A. E., Scorza, R., Verde, I., Ballard, R. E., Baird, W. V., Callahan, A., Monet, R. and Abbott, A. G. (1995) Genetic linkage mapping in peach using morphological RFLP and RAPD markers. Theoretical and Applied Genetics 90: 503-510.
  8. Shim, Y. H., Choi, J. H., Park, C. D., Lim, C. J., Cho, J. H. and Kim, H. J. (2003) Molecular differentiation of Panax species by RAPD analysis. Arch. Pharm. Res. 26: 601-605. https://doi.org/10.1007/BF02976708
  9. Moon, B. C., Choo, B. K., Cheon, M. S., Yoon, T., Ji, Y., Kim, B. B. and Lee, A. Y. (2010) Rapid molecular authentication of three medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum and Polygonum multiflorum (Fallopia multiflorum), by the development of RAPD-derived SCAR markers and multiplex-PCR. Plant BiotechBiotechnol. Rep. 4: 1-7. https://doi.org/10.1007/s11816-009-0114-7
  10. Tsumura, Y., Yoshimaru, K., Tomaru, N. and Ohba, K. (1995) Moleclular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Geneticsm 91: 1222-1236.
  11. Vos, P., Hogers, R., Bleeker, M. and Reijans, M. (1995) AFLP : a new technigue for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  12. Ha, W. Y., Yau, F. C., But, P. P., Wang, J. and Shaw, P. C. (2001) Direct amplification of length polymorphism analysis differentiates Panax ginseng from Panax. quinquefolius. Planta Med. 67: 587-589. https://doi.org/10.1055/s-2001-16483
  13. Oiki, S., Kawahara, T., Inoue, K., Ohara, M. and Maki, M. (2001) Random amplified polymorphic DNA (RAPD) variation among populations of the insular endemic plant Campanular microdonta (Campanulceae). Annals of Botany 87: 661-667. https://doi.org/10.1006/anbo.2001.1389
  14. Shaw, P. C. and But, P. P. (1995) Authentication of Panax species and their adulterants by random-primed polymerase chain reaction. Planta Med. 61: 466-469. https://doi.org/10.1055/s-2006-958138
  15. Partis, L. and Wells, R. J., (1996) Identification of fish species using random amplified polymorphic DNA(RAPD). Molecular and Cellular probes 10: 435-441. https://doi.org/10.1006/mcpr.1996.0060
  16. Ko, S. R., Choi, K. J. and Han, K. W., (1996) Comparison of proximate composition, mineral nutrient, amino acid and free sugar contents of several Panax species. Korean Journal of Ginseng Science 20: 36-41.
  17. Ko, S. R., Choi, K. J. and Han, K. W., (1996) Comparison of proximate composition, mineral nutrient, amino acid and free sugar contents of several Panax species. Korean Journal of Ginseng Science 20: 36-41.
  18. Kyung, K. H., Lee, W. J., Kim, M. Y., Ko, H. J. and Kim, H. Y., (2003) Study on the concept of substantial equivalence and safety assessment of genetically modified foods. The Annual Report of KFDA 7: 770.
  19. Partis, L. and Wells, R. J., (1996) Identification of fish species using random amplified polymorphic DNA(RAPD). Molecular and Cellular probes 10: 435-441. https://doi.org/10.1006/mcpr.1996.0060
  20. Song, B. K., Clyde, M. M., Wickneswari, R. and Normah, M. N. (2000) Genetic relatedness among lansium domesticum accessions using RAPD Markers. Annals of Botany 86: 299-307. https://doi.org/10.1006/anbo.2000.1186