DOI QR코드

DOI QR Code

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage

방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석

  • 안용훈 ((주)건화) ;
  • 곽태훈 (고려대학교 건축.사회환경공학부) ;
  • 이철호 (고려대학교 건축.사회환경공학부) ;
  • 최항석 (고려대학교 건축.사회환경공학부) ;
  • 최은석 ((주)에스디이엔지)
  • Received : 2010.04.26
  • Accepted : 2010.10.27
  • Published : 2010.11.30

Abstract

Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

준설매립지반의 압밀을 촉진시키기 위하여 연직방향 뿐만 아니라 방사방향의 배수를 유도하는 연직배수공법이 많이 사용된다. 하지만, 일반적으로 준설된 매립지반의 자중압밀이 완료되기 이전에 연직배수공법이 적용되므로 준설 매립지반의 자중압밀이 진행되는 도중에 연직방향과 방사방향 배수를 동시에 고려하여 압밀거동을 예측하는 것이 필요하다. 본 논문에서는 비선형 유한변형 자중압밀 과정에서 준설매립지반의 연직방향 및 방사방향을 모두 고려할 수 있는 새로운 해석방법을 제안하였다. 연직방향 비선형 유한변형 자중압밀은 Morris(2002)의 이론해와 PSDDF 해석 결과를 적용하고 방사방향 압밀은 Barron(1948)이 제시한 이론해를 도입하였다. 각 각의 압밀도를 Carillo(1942)의 제안식을 적용하여 연직방향과 방사방향 배수를 고려한 준설매립지반의 자중압밀을 예측하는 방법을 제시하였다. 본 연구에서 제안한 해석방법을 검증하기 위해 연직배수재가 설치된 대형자중압밀 시험을 수행한 후 해석결과와 비교하여, 제안한 해석방법이 실험결과를 잘 예측할 수 있음을 알 수 있었다.

Keywords

References

  1. 윤찬영, 조경진, 정충기 (2008) "다층지반 및 스미어 경계면 해석을 위한 유한차분 압말해석 기법" 대한토목학회 논문집, 제28호, 5권, pp.283-292.
  2. 최항석, 최한영, Stark, T.D. (2006), "준설매립지반의 침하거동 예측을 위한 준설토의 역학적 거동 특성", 한국지반공학회, 준설매립위원회 학술발표회, 교총회관, 서울, 8월 25 일, pp.75-86.
  3. 최항석, 옥영석, 이철호, 이종선 (2007), "인천지역 준설토의 압밀특성 분석과 현장매립 상태 예측방법 연구", 준절매립 기술위원회 학술발표회 논문집, 교총회관, 서울, 8월 24일, pp.95-104.
  4. Barron, R. A. (1948), "Consolidation of fine-grained soils by drain wells", Transactions, American Society of Civil Engineers, Vol.113, pp.718-742.
  5. Cargill, K.W. (1982), "Consolidation of Soft Layers by Finite Strain Analysis." Miscellaneous Paper GL-82-3, US Army Engineer Waterways Experiment Station, Vieksburg, MS.
  6. Cargill, K. W. (1986), "The large strain, controlled rate of strain (LSCRS) device tor consolidation testing of soft fine-grained soils", Technical Report GL-86-13, Waterways Experiment Station, Corps of Engineer, Vicksburg, MI.
  7. Carillo, N. (1942), "Simple Two and Three Dimensional Cases in the Theory of Consolidation of Soils", Journal of Mathematics and Physics, Vol.21, No.1, pp.1-5. https://doi.org/10.1002/sapm19422111
  8. Gibson, R. E., England, G. L., and Cargill, K. W. (1967), "The theory of one-dimensional consolidation of saturated clays. I. Finite non -linear consolidation of thin homogeneous layers", Geotechnique, Vol.7, No.3, pp.261-273.
  9. Hansbo, S. (1981), "Consolidation of Fine-Grained Soils by Prefabricated Drains," Proc., 10th ICSMFE, Stockholm, Vol.3, pp. 677-682.
  10. Hindebrand, F. B. (1949), Advanced calculus for engineers, Prentice-Hall, Englewood Cliffs, N. J.
  11. Lo, D. O. K (1991) "Soil Improvement by Vertical Drains", Ph.D. thesis, University of Illinois, Urbana-Champaign, IL.
  12. Morris, P. H. (2002), "Analytical solutions of linear finite-strain one -dimensional consolidation", Journal of geotechnical and geoenvironmental engineering, Vol.128, No.4, pp.319-326. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(319)
  13. Morris, P. H. (2007), "Correlations for zero effective stress void ratio of fine-grained marine and riverine sediments." Journal of Waterway, Port, Coastal. and Ocean Engineering., ASCE, Vol.133, No.4, pp.305-308. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(305)
  14. Onoue, A. (1988), "Consolidation by Vertical Drains taking Well Resistance and Smear into Consideration," Soils and Foundations, Vol.28, No.4, pp.165-174. https://doi.org/10.3208/sandf1972.28.4_165
  15. Rendulic, L. (1935). "Der Hydrodynamische Spannungsausgleich in Zentral Entwasserten Tonzylindern." Wasserwirtsch. U. Tech., Vol.2.
  16. Stark, T. D., Choi, H., and Schroeder, P. R. (2005a), "Settlement of Dredged and Contaminated Material Placement Areas, I: Theory and Use of Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill" Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol.131, No.2, pp.43-51. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(43)
  17. Stark, T. D., Choi, H, Schroeder, P. R. (2005b), "Settlement of Dredged and Contaminated Material Placement Areas, II: Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill Input Parameters." Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol.131, No.2, pp.52-61. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(52)
  18. Xie, K. H. (1987), "Sand-Drained Ground: Analytical and Numerical Solutions and Optimal Design," Dissertation, Zhijiang University, Hangzhou.
  19. Yoshikuni, H. (1979), "Design and Construction Control of Vertical Drain Methods," Gihodo, Tokyo, Foundation Engineering Series, Dissertation, Hiroshima University.
  20. Zeng, G. X. and Xie, K. H. (1989), "New Development of the Vertical Drain Theories", Proc., 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, Vol.2, pp.1435-1438.