DOI QR코드

DOI QR Code

Expression of a Functional zipFv Antibody Fragment and Its Fusions with Alkaline Phosphatase in the Cytoplasm of an Escherichia coli

  • Hur, Byung-Ung (Division of Molecular & Medical Biotechnology, College of Biomedical Science) ;
  • Choi, Hyo-Jung (Division of Molecular & Medical Biotechnology, College of Biomedical Science) ;
  • Yoon, Jae-Bong (Division of Molecular & Medical Biotechnology, College of Biomedical Science) ;
  • Cha, Sang-Hoon (IG Therapy Co.)
  • Received : 2010.03.02
  • Accepted : 2010.03.19
  • Published : 2010.04.30

Abstract

Background: Expression of recombinant antibodies and their derivatives fused with other functional molecules such as alkaline phosphatase in Escherichia coli is important in the development of molecular diagnostic reagents for biomedical research. Methods: We investigated the possibility of applying a well-known Fos-Jun zipper to dimerize $V_H$ and $V_L$ fragments originated from the Fab clone (SP 112) that recognizes pyruvate dehydrogenase complex-E2 (PDC-E2), and demonstrated that the functional zipFv-112 and its alkaline phosphatase fusion molecules (zipFv-AP) can be produced in the cytoplasm of Origami(DE3) trxB gor mutant E. coli strain. Results: The zipFv-AP fusion molecules exhibited higher antigen-binding signals than the zipFv up to a 10-fold under the same experimental conditions. However, conformation of the zipFv-AP seemed to be influenced by the location of an AP domain at the C-terminus of $V_H$ or $V_L$ domain [zipFv-112(H-AP) or zipFv-112(L-AP)], and inclusion of an AraC DNA binding domain at the C-terminus of VH of the zipFv-112(L-AP), termed zipFv-112(H-AD/L-AP), was also beneficial. Cytoplasmic co-expression of disulfide-binding isomerase C (DsbC) helped proper folding of the zipFv-112(H-AD/L-AP) but not significantly. Conclusion: We believe that our zipFv constructs may serve as an excellent antibody format bi-functional antibody fragments that can be produced stably in the cytoplasm of E. coli.

Keywords

References

  1. Morino K, Katsumi H, Akahori Y, Iba Y, Shinohara M, Ukai Y, Kohara Y, Kurosawa Y: Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J Immunol Methods 257;175-184, 2001 https://doi.org/10.1016/S0022-1759(01)00462-8
  2. Pack P, Pluckthun A: Miniantibodies use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31;1579-1584, 1992 https://doi.org/10.1021/bi00121a001
  3. Horne C, Klein M, Polidoulis I, Dorrington KJ: Noncovalent association of heavy and light chains of human immunoglobulins. III. Specific interactions between $V_H$ and $V_L$. J Immunol 129;660-664, 1982
  4. Jager M, Plückthun A: Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria. FEBS Lett 462;307-312, 1999 https://doi.org/10.1016/S0014-5793(99)01532-X
  5. Jager M, Plückthun A: Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen. J Mol Biol 285;2005-2019, 1999 https://doi.org/10.1006/jmbi.1998.2425
  6. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, et al: Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single- chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85;5879-5883, 1988 https://doi.org/10.1073/pnas.85.16.5879
  7. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M: Single-chain antigen-binding proteins. Science 242;423-426, 1988 https://doi.org/10.1126/science.3140379
  8. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I: A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339;394-397, 1989 https://doi.org/10.1038/339394a0
  9. Glockshuber R, Malia M, Pfitzinger I, Pluckthun A: A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29;1362-1367, 1990 https://doi.org/10.1021/bi00458a002
  10. Bird RE, Walker BW: Single chain antibody variable regions. Trends Biotechnol 9;132-137, 1991 https://doi.org/10.1016/0167-7799(91)90044-I
  11. Reiter Y, Brinkmann U, Jung SH, Lee B, Kasprzyk PG, King CR, Pastan I: Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J Biol Chem 269;18327-18331, 1994
  12. Jung SH, Pastan I, Lee B: Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins 19;35-47, 1994 https://doi.org/10.1002/prot.340190106
  13. Reiter Y, Brinkmann U, Lee B, Pastan I: Engineering antibody Fv fragments for cancer detection and therapy: disulfide- stabilized Fv fragments. Nat Biotechnol 14;1239-1245, 1996 https://doi.org/10.1038/nbt1096-1239
  14. Reiter Y, Brinkmann U, Kreitman RJ, Jung SH, Lee B, Pastan I: Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33;5451-5459, 1994 https://doi.org/10.1021/bi00184a014
  15. Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan I: Engineering interchain disulfide bonds into conserved framework regions of Fv fragments improved biochemical characteristics of recombinant immunotoxins containing disulfide- stabilized Fv. Protein Eng 7;697-704, 1994 https://doi.org/10.1093/protein/7.5.697
  16. Skerra A, Pluckthun A: Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240;1038-1041, 1988 https://doi.org/10.1126/science.3285470
  17. Krebber A, Burmester J, Pluckthun A: Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. Gene 178;71-74, 1996 https://doi.org/10.1016/0378-1119(96)00337-X
  18. Clark MA, Hammond FR, Papaioannou A, Hawkins NJ, Ward RL: Regulation and expression of human Fabs under the control of the Escherichia coli arabinose promoter, PBAD. Immunotechnol 3;217-226, 1997 https://doi.org/10.1016/S1380-2933(97)00016-X
  19. Knappik A, Pluckthun A: Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng 8;81-89, 1995 https://doi.org/10.1093/protein/8.1.81
  20. Deramn AI, Prinz WA, Belin D, Beckwith J: Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262;1744-1747, 1993 https://doi.org/10.1126/science.8259521
  21. He M, Hamon M, Liu H, Kang A, Taussig MJ: Functional expression of a single-chain anti-progesterone antibody fragment in the cytoplasm of a mutant Escherichia coli. Nucleic Acids Res 23;4009-4010, 1995 https://doi.org/10.1093/nar/23.19.4009
  22. Jurado P, Ritz D, Beckwith J, deLorenzo V, Fernandez LA: Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J Mol Biol 320;1-10, 2002 https://doi.org/10.1016/S0022-2836(02)00405-9
  23. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G: Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23; 338-347, 2001 https://doi.org/10.1006/prep.2001.1520
  24. Venturi M, Seifert C, Hunte C: High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol 315;1-8, 2002 https://doi.org/10.1006/jmbi.2001.5221
  25. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. 2nd ed. NY, USA: Cold Spring Harbor Laboratory Press Cold Spring Harbor; 1989
  26. Cha S, Leung PS, Coppel RL, VandeWater J, Ansari AA, Gershwin ME: Heterogeneity of combinatorial human autoantibodies against PDC-E2 and biliary epithelial cells in patients with primary biliary cirrhosis. Hepatology 20;574-583, 1994 https://doi.org/10.1002/hep.1840200305
  27. McCafferty J, Johnson, KS. Construction and screening of antibody display libraries. In: McCafferty J, Johnson KS, editors. Phage Display of Peptides and Proteins. A Laboratory Manual. San Diego, CA, USA: Academic Press Inc.; 1996
  28. Brunelle A, Schleif R: Determining residue-base interactions between AraC protein and araI DNA. J Mol Biol 209; 607-622, 1989 https://doi.org/10.1016/0022-2836(89)90598-6
  29. Menon KP, Lee NL: Activation of ara operons by a truncated AraC protein does not require inducer. Proc Natl Acad Sci U S A 87;3708-3712, 1990 https://doi.org/10.1073/pnas.87.10.3708
  30. Cha S, Leung PS, Gershwin ME, Fletcher MP, Ansari AA, Coppel RL: Combinatorial autoantibodies to dihydrolipoamide acetyltransferase, the major autoantigen of primary biliary cirrhosis. Proc Natl Acad Sci U S A 90;2527-2531, 1993 https://doi.org/10.1073/pnas.90.6.2527
  31. O'shea EK, Rutkowski R, Stafford WE 3rd, Kim PS: Preferential heterodimer formation by isolated leucine zipper from fos and jun. Science 245;646-648, 1989 https://doi.org/10.1126/science.2503872
  32. Griep RA, vanTwisk C, Kerschbaumer RJ, Harper K, Torrance L, Himmler G, vanderWolf JM, Schots A: pSKAP/S: an expression vector for the production of single-chain Fv alkaline phosphatase fusion proteins. Protein Expr Purif 16;63-69, 1999 https://doi.org/10.1006/prep.1999.1041
  33. Hayhurst A: Improved expression characteristics of single- chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif 18;1-10, 2000 https://doi.org/10.1006/prep.1999.1164
  34. Bustos SA, Schleif RF: Functional domains of the AraC protein. Proc Natl Acad Sci U S A 90:5638-5642, 1993 https://doi.org/10.1073/pnas.90.12.5638
  35. Strachan G, Williams S, Moyle SP, Harris WJ, Porter AJ: Reduced toxicity of expression, in Escherichia coli, of anti pollutant antibody fragments and their use as sensitive diagnostic molecules. J Appl Microbiol 87;410-417, 1999 https://doi.org/10.1046/j.1365-2672.1999.00834.x
  36. Bessette PH, Aslund F, Beckwith J, Georgiou G: Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96;13703-13708, 1999 https://doi.org/10.1073/pnas.96.24.13703