High-rate, Low-temperature Deposition of Multifunctional Nano-crystalline Silicon Nitride Films

  • Hwang, Jae-Dam (Department of Nano Science and Technology, University of Seoul) ;
  • Lee, Kyoung-Min (Department of Nano Engineering, University of Seoul) ;
  • Keum, Ki-Su (Department of Nano Science and Technology, University of Seoul) ;
  • Lee, Youn-Jin (Department of Nano Science and Technology, University of Seoul) ;
  • Hong, Wan-Shick (Department of Nano Science and Technology, University of Seoul)
  • 투고 : 2010.09.09
  • 심사 : 2010.09.28
  • 발행 : 2010.09.30

초록

The solid phase compositions and dielectric properties of silicon nitride ($SiN_x$) films prepared using the plasma enhanced chemical vapor deposition (PECVD) technique at a low temperature ($200^{\circ}C$) were studied. Controlling the source gas mixing ratio, R = $[N_2]/[SiH_4]$, and the plasma power successfully produced both silicon-rich and nitrogen-rich compositions in the final films. The composition parameter, X, varied from 0.83 to 1.62. Depending on the film composition, the dielectric properties of the $SiN_x$ films also varied substantially. Silicon-rich silicon nitride (SRSN) films were obtained at a low plasma power and a low R. The photoluminescence (PL) spectra of these films revealed the existence of nano-sized silicon particles even in the absence of a post-annealing process. Nitrogen-rich silicon nitride (NRSN) films were obtained at a high plasma power and a high R. These films showed a fairly high dielectric constant ($\kappa$ = 7.1) and a suppressed hysteresis window in their capacitance-voltage (C-V) characteristics.

키워드

참고문헌

  1. H. Wang, G.I. Ng, H. Yang and K. Radhakrishnan. Jpn. J. Appl. Phys. 41, 1059 (2002). https://doi.org/10.1143/JJAP.41.1059
  2. I. Kobayashi, T. Ogawa and S. Hotta. Jpn. J. Appl. Phys. 31, 336 (1992). https://doi.org/10.1143/JJAP.31.336
  3. A.G. Cullis, L.T. Canham, Nature 353, 335 (1991). https://doi.org/10.1038/353335a0
  4. K.M. Lee, T.H. Kim, W.S. Hong, Scripta Mater. 59, 1190 (2008). https://doi.org/10.1016/j.scriptamat.2008.08.006
  5. J.K. Lee, K.W. Park, H.R. Kim, S.H. Kong, J. Information Display 11, 84 (2010). https://doi.org/10.1080/15980316.2010.9652125
  6. S. Ali, M. Gharghi, S. Sivoththaman, J. Mater. Sci. 40, 1469 (2005). https://doi.org/10.1007/s10853-005-0585-z
  7. Z. Yin and F. W. Smith, Phys. Rev. B 42, 3666 (1989).
  8. T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sung, Y.W. Ok, T.Y. Seong and C.J. Choi, Appl. Phys. Lett. 85, 5355 (2004). https://doi.org/10.1063/1.1814429
  9. N.M. Park, C.J. Choi, T.Y. Seong, S.J. Park, Phys. Rev. Lett. 86, 1355 (2001). https://doi.org/10.1103/PhysRevLett.86.1355