DOI QR코드

DOI QR Code

Analysis of the Different Heated Milks using Electronic Nose

열처리를 달리한 시유의 전자코 분석

  • Hong, Eun-Jeung (Department of Food Science and Technology, Seoul Women's University) ;
  • Noh, Bong-Soo (Department of Food Science and Technology, Seoul Women's University) ;
  • Park, Seung-Yong (Department of Animal Science, Cheonan Yonam College University)
  • 홍은정 (서울여자대학교 식품공학과) ;
  • 노봉수 (서울여자대학교 식품공학과) ;
  • 박승용 (천안연암대학교 축산계열)
  • Received : 2010.03.03
  • Accepted : 2010.09.14
  • Published : 2010.10.31

Abstract

This study was conducted to investigate the application of a model system using an MS-electronic nose based on the discriminative function analysis on volatile flavors, to prediction of the shelf-life of market milk by preservation temperature and differently-loaded heat treatment. On mass spectrum, the ion fragments of volatile flavors of milk obtained from MS-electronic nose could be distinguished at amu 60, 91, 92, and 93. The response levels of volatile flavors at each amu increased in proportion to the heat treatment loaded to the milk, in the order of LTLT, HTST, and UHT. This study indicated that the discriminative function scores of the volatile flavors seemed to correlate with the preservation temperature, storage period, and heat treatment conditions; DF1 (discriminative function first score) showed a strong relationship to storage periods, with $r^2$ of 0.9965, 0.9965, and 0.9911 at temperatures of 4, 7, and $10^{\circ}C$, respectively, while DF2 was influenced by heat treatment conditions with an $r^2$ of 0.9861 at $4^{\circ}C$. It is suggested that the discriminative function analysis given by an MS-electronic nose could be used to construct a new quality control model system for the evaluation of heat treatment loaded during the processing of milk, and for predicting storage periods of market milk.

본 연구는 MS-전자코 분석기술과 판별함수분석을 응용하여 우유의 가열조건 및 보존온도에 따른 저장기간을 예측할 수 있는 가능성을 알아보고자 실시하였다. MS-전자코 분석에 의하여 mass spectrum에서 검출된 우유의 휘발성 성분들은 amu 60, 91, 92 및 93에서 얻은 ion fragments 들의 intensity로 구분이 가능하였다. 이 범위의 amu에서 검출된 휘발성 물질들의 검출 수준은 매우 낮은 수준이었으나, 가열처리 조건에 따라 휘발성 물질의 검출 수준의 차이가 LTLT$\rightarrow$HTST$\rightarrow$UHT$\rightarrow$멸균유 순으로 뚜렷하게 나타났다. 검출된 성분들의 intensity값을 판별함수 값으로 변환하여 보존온도, 저장기간 및 열처리 조건과의 관련성을 알아본 결과 판별함수 값 DF1은 저장기간에 따라 변화하는 휘발성 성분의 변화량과 높은 상관관계을 보였으며, 4,7, 및 $10^{\circ}C$의 보존 온도에서 $r^2$값은 각각 0.9965, 0.9965 및 0.9911이었다. 반면에 판별함수 값 DF2는 가열온도에 따라 변화하는 휘발성 성분의 변화량과 높은 상관관계를 보였으며, $4^{\circ}C$의 보존 온도에서 $r^2$값은 0.9861이었다. 따라서 MS-전자코 분석기술과 판별함수분석을 응용하여 우유의 가열조건 및 보존온도에 따른 저장기간을 예측할 수 있는 새로운 품질관리 모델시스템 구축이 가능함을 확인할 수 있었다.

Keywords

References

  1. Al-Attabi, Z.D., Arcy, B.R., and Deeth, H.C.(2009) Volatile sulphur compounds in UHT milk. Critical Rev. Food Sci. Nutri. 49(1), 28-47.
  2. Ampuero, S., Zesiger, T., Gustafsson, V., Lunden, A., and Bosset, J.O. (2002) Determination of trimethylamine in milk using an MS based electronic nose. Eur. Food Res. Technol. 214, 163-167. https://doi.org/10.1007/s00217-001-0463-0
  3. Barlet, P. N., Elliott, J. M., and Gadner, J. W. (1997) Electronic nose and their application in the food industry. Food Technol. 51(12), 44-48.
  4. Choi, H. D. (1995) Use and development of sensation sensor. Bulletin Food Technol. 8, 122-131.
  5. Chung, C. I., Kim, K. T., Cho, N. Y., Jung, M. J., Oh, H. S., and Lee, G. (2002) Comparison of the keeping quality of UHT pasteurized milks in Korea. Korean J. Food Sci. Ani. Resour. 22(3), 247-251.
  6. Chung, S. J., Lim, C.R., and Noh, B.S. (2008) Understanding the sensory characteristics of various types of milk using descriptive analysis and electronic nose. Korean J. Food Sci. Technol. 40(1), 47-55.
  7. Elliker, P. R., Sing, E. I., Christensen, L. J., and Sandine W. E. (1964) Psychrophilic bacteria and keeping quality of pasteurized dairy products. J. Milk Food Technol. 27, 69-75.
  8. Hodgins, D. and Simmonds, D. (1995) Sensory technology for flavor analysis. Cereal Foods World, 40, 186-191.
  9. Iwatsuki, K., Mizota, Y., and Kubota, T. (1999) Evaluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis. J. Japanese Soc. Sci. Tech. 46(9), 587-597. https://doi.org/10.3136/nskkk.46.587
  10. Kim, S. M. and Noh, B. S. (2002) Characteristics of shelflife of soybean curd by electronic noses. Korean J. Sci. Agric. Machinery, 27(3), 241-248.
  11. Kwon, S. H., Ahn, J. J., and Kwak, H. S. (1998) Quality changes in various heat-treated market milks during storage. J. Korean Dairy Technol. Sci. 16(2), 90-97.
  12. Said, L., Sandrine, B., Sonia, C., and Eric, C. (2005) Shelf life determination by electronic nose: application to milk. Sensors and Actuators B. 106, 199-206. https://doi.org/10.1016/j.snb.2004.06.027
  13. Rovner, S. L. (2006) Processing milk under pressure-low temperature treatment keeps unsavory volatiles in check. Chem. Eng. News, Food Sci. Nov. p. 14.
  14. Vincent, D. (1999) Electronic nose; principal and application. Nature 402, 351-352. https://doi.org/10.1038/46421
  15. White, C. H., Wilson, J., and Schilling, M. W. (2006) An Investigation of the use of the MicroFoss as an indicator of the shelf life of pasteurized fluid milk. J. Dairy Sci. 89, 2459-2464. https://doi.org/10.3168/jds.S0022-0302(06)72319-0
  16. Yang, Y. M., Noh, B. S., and Hong, H. K. (1999) Prediction freshness for milk by the portable electronic nose. Food Eng. Progress 3(1), 45-50.
  17. Youn, A. R. (2007) Analysis for cyclodextrins to entrap with hexanal using electronic nose. Korean J. Food Sci. Technol. 39(1), 1-6.

Cited by

  1. Analysis of Various Honeys from Different Sources Using Electronic Nose vol.31, pp.2, 2011, https://doi.org/10.5851/kosfa.2011.31.2.273
  2. 전자코를 이용한 가열 중 레토르트 파우치로부터 발생한 휘발성분의 분석 vol.49, pp.1, 2017, https://doi.org/10.9721/kjfst.2017.49.1.14