DOI QR코드

DOI QR Code

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo (Department of Animal Science and Biotechnology Research Institute, Chonnam National University) ;
  • Chin, Koo-Bok (Department of Animal Science and Biotechnology Research Institute, Chonnam National University)
  • Received : 2010.07.05
  • Accepted : 2010.09.29
  • Published : 2010.10.31

Abstract

Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Keywords

References

  1. Boles, J. A. and Shand P. J. (1998) Effect of comminution method and raw binder system in restructured beef. Meat Sci. 49, 297-307. https://doi.org/10.1016/S0309-1740(97)00132-0
  2. Bryant, C. M. and McClements, D. J. (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trend Food Sci. Technol. 9, 143-151. https://doi.org/10.1016/S0924-2244(98)00031-4
  3. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009a) Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Sci. 81, 565-572. https://doi.org/10.1016/j.meatsci.2008.10.012
  4. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009b) Effect of soy protein substitution for sodium caseinate on the transglutaminase- induced cold and thermal gelation of myofibrillar protein. Food Res. Int. 42, 941-948. https://doi.org/10.1016/j.foodres.2009.05.008
  5. Cochran, W. G. and Cox, G. M. (1992) Experimental designs, 2nd edn. John Wiley and Sons Inc., NY, pp 335-375.
  6. Draget, K. I., Ostgaard, K., and Smidsrod, O. (1991) Homogeneous alginate gels: A technical approach. Carbohydr. Polym. 14, 159-178.
  7. Fernandez-Martin, F., Cofrades, S., Carballo, J., and Jimenez-Colmenero, F. (2002) Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci.61, 15-23. https://doi.org/10.1016/S0309-1740(01)00157-7
  8. Folk, J. E. (1980). Transglutaminase. Ann. Rev. Biochem. 49, 517-531. https://doi.org/10.1146/annurev.bi.49.070180.002505
  9. Gornall, A. G., Bardawill, C. Y., and David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751-766.
  10. Hong, G. P. and Chin, K. B. (2009) Optimisations of calcium alginate and microbial transglutaminase systems to form a cold-set myofibrillar protein gelation. Korean J. Food Sci. Ani. Resour. 5, 590-598. https://doi.org/10.5851/kosfa.2009.29.5.590
  11. Hong, G. P. and Chin, K. B. (2010a) Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocolloid. 24, 444-451. https://doi.org/10.1016/j.foodhyd.2009.11.011
  12. Hong, G. P. and Chin, K. B. (2010b) Evaluation of sodium alginate and glucono-$\delta$-lactone levels on the cold-set gelation of porcine myofibrillar protein at different salt concentrations. Meat Sci. 85, 201-209. https://doi.org/10.1016/j.meatsci.2009.12.026
  13. Kulmyrzaev, A., Chanamai, R., and McClements, D. J. (2000) Influence of pH and $CaCl_{2}$ on the stability of dilute whey protein stabilized emulsions. Food Res. Int. 33, 15-20. https://doi.org/10.1016/S0963-9969(00)00018-1
  14. Kuraish, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C., and Soeda, T. (1997) Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci. 62, 488-490, 515. https://doi.org/10.1111/j.1365-2621.1997.tb04412.x
  15. Kutemeyer, C., Froeck, M., Werlein, H. D., and Watkinson, B. M. (2005) The influence of salts and temperature on enzymatic activity of microbial transglutaminase. Food Control. 16, 735-737. https://doi.org/10.1016/j.foodcont.2004.06.012
  16. Lee, W. C., Yusof, S., Hamid, N. S. A., and Baharin, B. S. (2006) Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng. 73, 55-63. https://doi.org/10.1016/j.jfoodeng.2005.01.005
  17. Mancini, M., Moresi, M., and Rancini, R. (1999) Mechanical properties of alginate gels: empirical characterization. J. Food Eng. 39, 369-378. https://doi.org/10.1016/S0260-8774(99)00022-9
  18. McClements, D. J. (1999) Food emulsions: Principles, practice, and techniques. CRC Press, Boca Raton, pp. 17-37.
  19. McClements, D. J. (2006) Non-covalent interactions between proteins and polysaccharides. Biotechnol. Adv. 24, 621-625. https://doi.org/10.1016/j.biotechadv.2006.07.003
  20. Means, W. J. and Schmidt, G. R. (1986) Algin/calcium gel as a raw and cooked binder in structured beef steaks. J. Food Sci. 51, 60-65. https://doi.org/10.1111/j.1365-2621.1986.tb10836.x
  21. Means, W. J. and Schmidt, G. R. (1987) Restructuring fresh meat without the use of salt or phosphate. In: Advanced in meat research. Pearson, A. M. and Dutson, T. R. (eds.) Van Nostrand Reinhold, NY, Vol. 3, pp. 469-487.
  22. Moreno, H. M., Carballo, J., and Borderias, A. J. (2008) Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. J. Sci. Food Agric. 88, 1529-1536. https://doi.org/10.1002/jsfa.3245
  23. Neiser, S., Draget, K. I., and Smidsrod, O. (1999) Interactions in bovine serum albumin-calcium alginate gel systems. Food Hydrocolloid. 13, 445-458. https://doi.org/10.1016/S0268-005X(99)00019-3
  24. Ngapo, T. M., Wilkinson, B. H. P., and Chong, R. (1996) 1,5-Glucono-a-lactone-induced gelation of myofibrillar protein at chilled temperature. Meat Sci. 42, 3-13. https://doi.org/10.1016/0309-1740(95)00028-3
  25. Nielsen, G. S., Petersen, B. R., and Moller, A. J. (1995) Impact of salt, phosphate and temperature on the effects of a transglutaminase (F XIIIa) on the texture of restructured meat. Meat Sci. 41, 293-99. https://doi.org/10.1016/0309-1740(94)00002-O
  26. Park, J. W. (2000) Ingredient technology and formulation development. In: Surimi and surimi seafood. Park, J. W. (ed.) Marcel Dekker Inc., NY, pp. 343-391.
  27. Ramirez, J., Uresti, R., Tellez, S., and Vazquez, M. (2002) Using salt and microbial transglutaminase as binding agents in restructured fish products resembling hams. J. Food Sci. 67, 1778-1784. https://doi.org/10.1111/j.1365-2621.2002.tb08722.x
  28. Ramirez-Suarez, J. C. and Xiong, Y. L. (2003) Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures. Meat Sci. 65, 899-907. https://doi.org/10.1016/S0309-1740(02)00297-8
  29. Sakamoto, H., Kumazawa, Y., and Motoki, M. (1994) Strength of protein gels prepared with microbial transglutaminase as related to reaction conditions. J. Food Sci. 59, 866-871. https://doi.org/10.1111/j.1365-2621.1994.tb08146.x
  30. Xiong, Y. L. (1993) A comparison of the rheological characteristics of different fractions of chicken myofibrillar proteins. J. Food Biochem. 16, 217-227.

Cited by

  1. Evaluation of red bean protein [Vigna angularis] isolate on rheological properties of pork myofibrillar protein gels induced by microbial transglutaminase vol.50, pp.7, 2015, https://doi.org/10.1111/ijfs.12809