DOI QR코드

DOI QR Code

A Hybrid Approach for Regression Testing in Interprocedural Program

  • Singh, Yogesh (University School of Information Technology, GGS Indraprastha University) ;
  • Kaur, Arvinder (University School of Information Technology, GGS Indraprastha University) ;
  • Suri, Bharti (University School of Information Technology, GGS Indraprastha University)
  • Published : 2010.03.31

Abstract

Software maintenance is one of the major activities of the software development life cycle. Due to the time and cost constraint it is not possible to perform exhaustive regression testing. Thus, there is a need for a technique that selects and prioritizes the effective and important test cases so that the testing effort is reduced. In an analogous study we have proposed a new variable based algorithm that works on variables using the hybrid technique. However, in the real world the programs consist of multiple modules. Hence, in this work we propose a regression testing algorithm that works on interprocedural programs. In order to validate and analyze this technique we have used various programs. The result shows that the performance and accuracy of this technique is very high.

Keywords

References

  1. K.K. Aggarwal, Y. Singh, Software engineering programs documentation, operating procedures, third edition, New Age International Publishers, New Delhi, 2008.
  2. B.Beizer, Software testing techniques, Van Nostround Reinhold, New York, 1990.
  3. R. V. Binder, Testing object- oriented systems Reading, Mass.: Addison Wesley, 2000.
  4. S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, S. Kanduri, Understanding the effects of changes on the cost-effectiveness of regression testing techniques. Journal of Software Testing, Verification, and Reliability 13(2) (June 2003) 65-83. https://doi.org/10.1002/stvr.263
  5. Y.Chen, D. Rosenblum, K. Vo., Test tube: A system for selective regression testing, in: Proceedings of the 16th International Conference on Software Engineering, Los Alamitos, Calif., 1994, pp.211-220. https://doi.org/10.1109/ICSE.1994.296780
  6. K. Fischer, F. Raji, A. Chrusciki, A methodology for retesting modified software, in: Proceedings of the National Telecommunications Conference B-6-3 (November 1981) 1-6.
  7. R. Gupta, M. J. Harrold, M. Soffa, An approach to regression testing using slicing, in: Proceedings of the Conference on Software Maintenance, 1992, pp. 299-308. https://doi.org/10.1109/ICSM.1992.242531
  8. G. Rothermel, Efficient effective regression testing using safe test selection techniques, PhD thesis, Clemson University, 1996.
  9. J.Bible, G. Rothermel, D. Rosenblum, Coarse- and fine-grained safe regression test selection. ACM Transactions on Software Engineering and Methodology 10 (2), (2001) 149-183. https://doi.org/10.1145/367008.367015
  10. T. Graves, M. J. Harrold, J. M. Kim, A. Porter, G. Rothermel, An empirical study of regression test selection techniques, in: Proceedings of the 20th International Conference on Software Engineering, IEEE Computer Society Press, Kyoto, Japan, 1998, pp.188-197. https://doi.org/10.1109/ICSE.1998.671115
  11. G. Rothermel, M. J. Harrold, Empirical studies of a safe regression test selection technique, IEEE Transactions on Software Engineering 24(6) (1998) 401-419. https://doi.org/10.1109/32.689399
  12. G. Rothermel, M. J. Harrold, J. Dedhia, Regression test selection for C++ programs, Software Testing, Verification and Reliability 10(2) (2000) 77-109. https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
  13. S. Elbaum, A. G. Malishevsky, G. Rothermel, Test case prioritization: A family of empirical studies, IEEE Transactions on Software Engineering 28(2), (February 2002), pp.159-182. https://doi.org/10.1109/32.988497
  14. S. Elbaum, G. Rothermel, S. Kanduri, A. G. Malishevsky, Selecting a cost-effective test case prioritization technique. Software Quality Journal 12(3) (2004) , pp.185-210. https://doi.org/10.1023/B:SQJO.0000034708.84524.22
  15. G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Prioritizing test cases for regression testing, IEEE Transactions on Software Engineering 27(10) (October 2001) 929-948. https://doi.org/10.1109/32.962562
  16. J. M. Kim, A. Porter, A history-based test prioritization technique for regression testing in resource constrained environments, in: Proceedings of the 24th International Conference on Software Engineering, Orlando, Fla., (2002) 119-129. https://doi.org/10.1145/581339.581357
  17. J. A. Jones, M. J. Harrold, Test-suite reduction and prioritization for modified condition/decision coverage, in: Proceedings of the International Conference on Software Maintenance, Florence, Italy, (2001) 92-101. https://doi.org/10.1109/ICSM.2001.972715
  18. H. Srikanth, Requirements-based test case prioritization, Student Research Forum in 12th ACM SIGSOFT International Symposium on the Foundations of Software Engineering, Newport Beach, Calif, 2004.
  19. D.Jeffrey, N. Gupta, Test case prioritization using relevant slices, in: Proceedings of Computer Software and Applications (COMPSAC'06), Chicago, (2006) 411-420. https://doi.org/10.1109/COMPSAC.2006.80
  20. B. Korel, G. Koutsogiannakis, L.H. Tahat, Model –-based test prioritization heuristic methods and their evaluation, in: the proceedings of the 3rd International Workshop on Advances in Model-based Testing, London, UK, (2007) 34-43. https://doi.org/10.1145/1291535.1291539
  21. R. Krishnamoorthi, S.A. Sahaaya, Factor oriented requirement coverage based system test case prioritization of new and regression test cases, Information and Software Technology 51, (2009) 799-808. https://doi.org/10.1016/j.infsof.2008.08.007
  22. K.K. Aggarwal, Y. Singh, A. Kaur, Code coverage based technique for prioritizing test cases for regression testing, ACM SIGSOFT Software Engineering Notes 29 (5) (September 2004). https://doi.org/10.1145/1022494.1022511
  23. W. E. Wong, J. R. Horgan, S. London, H. Agrawal, A study of effective regression testing in practice, in: Proceedings of the 8th IEEE International Symposium on Software Reliability Engineering, (1997) 264-274.
  24. R. Gupta, M. L. Soffa, Priority based data flow testing, IEEE ICSM, 1995, pp.348-357. https://doi.org/10.1109/ICSM.1995.526556
  25. Y. Singh, A. Kaur, B. Suri, Regression Test Selection and Prioritization Using Variables - Analysis and Experimentation. Software Quality Professional, Vol.11, No.2, (March, 2009), pp.38-51.
  26. C. Kaner , J. Bach, and B. Pettichord, Lessons learned in software testing, John Wiley and Sons, New York, 2002.
  27. Hierons, R.M., M. Harman, C.J. Fox, Branch coverage testability transformation for unstructured programs, The Computer Journal, Oxford university press, 48(4), (2005) 421-436. https://doi.org/10.1093/comjnl/bxh093
  28. Gregg Rothermel, Roland H. Untch, Chengyun Chu, Mary Jean Harrold, Test Case Prioritization: An Empirical Study, in: Proceedings of the International Conference on Software Maintenance, Oxford, UK, (September, 1999) 179-188. https://doi.org/10.1109/ICSM.1999.792604
  29. R. A. DeMillo, R. J. Lipton, and G. Sayward, Hints on test data selection: Help for the practicing programmer. Computer 11(4) , (1978) 34-41. https://doi.org/10.1109/C-M.1978.218136
  30. A.F. Offutt, Investigations of the software testing coupling effect, ACM Transactions on software engineering and methodology 1(1) (January, 1992) 5-20. https://doi.org/10.1145/125489.125473
  31. A.G. Malishevsky, J.R. Ruthru, G. Rothermel S.Elbaum, Cost-cognizant Test Case Prioritization, Technical Report TR-UNL-CSE-2006-0004, Department of Computer Science and Engineering, University of Nebraska, Lincoln, Nebraska, U.S.A., March, 2006.

Cited by

  1. DEVELOPMENT AND VALIDATION OF AN IMPROVED TEST SELECTION AND PRIORITIZATION ALGORITHM BASED ON ACO vol.21, pp.06, 2014, https://doi.org/10.1142/S0218539314500326
  2. Effective Regression Test Case Selection vol.50, pp.2, 2017, https://doi.org/10.1145/3057269
  3. Test suite prioritisation using trace events technique vol.7, pp.2, 2013, https://doi.org/10.1049/iet-sen.2011.0203
  4. Regression Testing-Based Requirement Prioritization of Mobile Applications vol.3, pp.4, 2012, https://doi.org/10.4018/jssoe.2012100102