DOI QR코드

DOI QR Code

Efficient Synthetic Method of Z-Selective 2-Halo-1,3-dienes from Reactions of Allenols Possessing Ethoxycarbonyl and Vinyl Group with Indium Trihalide

  • Eom, Da-Han (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kim, Sung-Hong (Analysis Research Division Daegu Center, Korea Basic Science Institute) ;
  • Lee, Phil-Ho (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Published : 2010.03.20

Abstract

An efficient synthetic method of Z-selective 3-ethoxycarbonyl-2-halo-1,3-dienes and 3-vinyl-2-halo-1,3-dienes was developed from the reaction of allenols having ethoxycarbonyl and vinyl group with indium trihalides at room temperature in $CH_2Cl_2$.

Keywords

References

  1. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, U.K., 1990.
  2. Oppolzer, W. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 5, pp 315.
  3. Kappe, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron 1997, 53, 14179. https://doi.org/10.1016/S0040-4020(97)00747-3
  4. Marsault, E.; Toro, A.; Nowak, P.; Deslongchamps, P. Tetrahedron 2001, 57, 4243. https://doi.org/10.1016/S0040-4020(01)00121-1
  5. Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668. https://doi.org/10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z
  6. Horvath, A.; Backvall, J.-E. J. Org. Chem. 2001, 66, 8120. https://doi.org/10.1021/jo015950x
  7. Ma, S.; Wang, G. Tetrahedron Lett. 2002, 43, 5723. https://doi.org/10.1016/S0040-4039(02)01207-8
  8. Deng, Y.; Jin, X.; Ma, S. J. Org. Chem. 2007, 72, 5901. https://doi.org/10.1021/jo070725m
  9. Deng, Y.; Jin, X.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2169. https://doi.org/10.1021/ol9004273
  10. Cho, Y. S.; Jun. B. K.; Pae, A. N.; Cha, J. H.; Koh, H. Y.; Chang, M. H.; Han, S-Y. Synthesis 2004, 16, 2620.
  11. Park, C.; Lee, P. H. Org. Lett. 2008, 10, 3359. https://doi.org/10.1021/ol801196g
  12. Lee, K.; Lee, P. H. Chem. Eur. J. 2007, 13, 8877. https://doi.org/10.1002/chem.200700796
  13. Yu, H.; Lee, P. H. J. Org. Chem. 2008, 73, 5183. https://doi.org/10.1021/jo800594y
  14. Seomoon, D.; A. J.; Lee, P. H. Org. Lett. 2009, 11, 2401. https://doi.org/10.1021/ol9005213
  15. Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. https://doi.org/10.1021/jo801169h
  16. Lee, K.; Lee, P. H. Org. Lett. 2008, 10, 2441. https://doi.org/10.1021/ol800719g
  17. Lee, K.; Lee, P. H. Tetrahedron Lett. 2008, 49, 4302. https://doi.org/10.1016/j.tetlet.2008.04.123
  18. Lee, W.; Kang, Y.; Lee, P. H. J. Org. Chem. 2008, 73, 4326. https://doi.org/10.1021/jo800438n
  19. Seomoon, D.; Lee, P. H. J. Org. Chem. 2008, 73, 1165. https://doi.org/10.1021/jo702279t
  20. Lee, K.; Lee, P. H. Bull. Korean Chem. Soc. 2008, 29, 487. https://doi.org/10.5012/bkcs.2008.29.2.487
  21. Lee, J.-Y.; Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 1929. https://doi.org/10.5012/bkcs.2007.28.11.1929
  22. Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 17. https://doi.org/10.5012/bkcs.2007.28.1.017
  23. Seomoon, D.; Lee, K.; Kim, H.; Lee, P. H. Chem. Eur. J. 2007, 13, 5197. https://doi.org/10.1002/chem.200601338
  24. Lee, P. H.; Lee, K.; Kang, Y. J. Am. Chem. Soc. 2006, 128, 1139. https://doi.org/10.1021/ja054144v
  25. A, J.; Lee, P. H. Bull. Korean Chem. Soc. 2009, 30, 471. https://doi.org/10.5012/bkcs.2009.30.2.471
  26. Clardy, J.; Forsyth, C. J. J. Am. Chem. Soc. 1990, 112, 3497. https://doi.org/10.1021/ja00165a038
  27. Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. J. Org. Chem. 2007, 72, 3868. https://doi.org/10.1021/jo0701435
  28. Park, J.; Kim, S. H.; Lee, P. H. Org. Lett. 2008, 10, 5067. https://doi.org/10.1021/ol802073q
  29. Choe, Y.; Lee, P. H. Org. Lett. 2009, 11, 1445. https://doi.org/10.1021/ol9001703
  30. Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8846.

Cited by

  1. Palladium-Catalyzed Allyl Cross-Coupling Reactions with In Situ Generated Organoindium Reagents vol.6, pp.8, 2011, https://doi.org/10.1002/asia.201000890
  2. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  3. -isoindole Derivatives from Arylacyl Bromides via Homoallenic Bromohydrins vol.80, pp.4, 2015, https://doi.org/10.1021/acs.joc.5b00072
  4. [3,3]-Sigmatropic rearrangement of allenic alcohols: stereoselective synthesis of 1,3-diene-2-ol sulfonates vol.15, pp.18, 2017, https://doi.org/10.1039/C7OB00578D
  5. Copper-Catalyzed Direct and Stereoselective Synthesis of Conjugated Enynes from α-Allenols pp.16154150, 2019, https://doi.org/10.1002/adsc.201801211
  6. ChemInform Abstract: Efficient Synthetic Method of Z-Selective 2-Halo-1,3-dienes from Reactions of Allenols Possessing Ethoxycarbonyl and Vinyl Group with Indium Trihalide. vol.41, pp.32, 2010, https://doi.org/10.1002/chin.201032079
  7. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2010, https://doi.org/10.5012/bkcs.2011.32.8.2911
  8. The half‐sandwich titanocene CpTiIIICl2 as efficient system for the preparation of 2,5‐dihydrofurans via α‐allenols vol.34, pp.1, 2010, https://doi.org/10.1002/aoc.5244
  9. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality vol.121, pp.7, 2021, https://doi.org/10.1021/acs.chemrev.0c00986