DOI QR코드

DOI QR Code

A Pyrenyl-Appended Triazole-Based Calix[4]arene as a Fluorescent Sensor for Iodide Ion

  • Published : 2010.03.20

Abstract

The synthesis and evaluation of a novel calix[4]arene-based fluorescent chemosensor 1 for the detection of I. is described. The fluorescent changes observed upon addition of various anions show that 1 is selective for I. over other anions. Addition of I. results in ratiometric measurements with 1 : 1 complex ratio.

Keywords

References

  1. Wygladacz, K.; Bakker, E. Analyst 2007, 132, 268 and references in. https://doi.org/10.1039/b614562k
  2. Butler, E. C. V. Trends Anal. Chem. 1996, 15, 45.
  3. Jayaraman, S.; Teiltler, L.; Skalski, B.; Verkman, A. S. Am. J. Physiol. Cell Physiol. 1999, 277, 1008.
  4. Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302. https://doi.org/10.1021/ar00046a003
  5. Czarnik, A. W. Chem. Biol. 1995, 2, 423. https://doi.org/10.1016/1074-5521(95)90257-0
  6. Chemosensors for Ion and Molecule Recognition. NATO ASI Series; Desvergnes, J. P., Czarnik, A. W., Eds., Kluwer Academic: Dordrecht, 1997.
  7. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  8. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
  9. Gale, P. A. Coord. Chem. Rev. 2000, 199, 181. https://doi.org/10.1016/S0010-8545(99)00149-6
  10. Fabrizzi, L. Ed., Luminescent Sensors; Coord. Chem. Rev. 2000, 205, 1. https://doi.org/10.1016/S0010-8545(00)00235-6
  11. Kuswandi, B. Jurnal ILMU DASRA 2000, 1, 18.
  12. Bren, V. A. Russ. Chem. Rev. 2001, 70, 1017. https://doi.org/10.1070/RC2001v070n12ABEH000667
  13. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79. https://doi.org/10.1016/S0010-8545(00)00364-7
  14. Valeur, B. Molecular Fluorescence; Wiley-VCH: Weinheim, 2002.
  15. Diamond, D.; Nolan, K. Anal. Chem. 2001, 73, 22A-29A.
  16. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. Engl. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  17. Ludwig, R.; Dzung, N. T. K. Sensors 2002, 2, 397. https://doi.org/10.3390/s21000397
  18. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  19. Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551. https://doi.org/10.1016/j.tet.2005.05.043
  20. Dallali, N.; Darabi, A.; Agrawal, Y. K. Rev. Anal. Chem. 2005, 24, 263.
  21. Amendola, V.; Fabbrizzi, I.; Forti, F.; Pallavicini, P.; Poggi, A.; Sacchi, D.; Tagleitti, A. Coord. Chem. Rev. 2006, 250, 273. https://doi.org/10.1016/j.ccr.2005.04.022
  22. Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonellato, U. Chem. Eur. J. 2006, 12, 1844. https://doi.org/10.1002/chem.200500549
  23. Kungwandi, B.; Nuriman.; Verboom, W.; Reinhoudt, D. N. Sensors 2006, 6, 978. https://doi.org/10.3390/s6080978
  24. Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonallato, U. Chem. Eur. J. 2006, 12, 1844. https://doi.org/10.1002/chem.200500549
  25. Valeur, B.; Leray, I. Inorg. Chem. Acta 2007, 360, 765. https://doi.org/10.1016/j.ica.2006.07.027
  26. Lohr, H.-G., Vogtle, F. Acc. Chem. Res. 1985, 18, 65. https://doi.org/10.1021/ar00111a001
  27. Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Talanta 2002, 57, 883.
  28. Zhu, L.; Anslyn, E. V. Angew. Chem. Int. Ed. 2006, 45, 1190. https://doi.org/10.1002/anie.200501476
  29. Anslyn, E. V. J. Org. Chem. 2007, 72, 687. https://doi.org/10.1021/jo0617971
  30. Bell, T. W.; Hext, N. M. Chem. Soc. Rev. 2004, 33, 589.
  31. Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J.; Yamaguchi, M. Anal. Chem. 2000, 72, 4199. https://doi.org/10.1021/ac0002588
  32. Okamoto, A.; Ichiba, T.; Saito, I. J. Am. Chem. Soc. 2004, 126, 8364. https://doi.org/10.1021/ja049061d
  33. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465. https://doi.org/10.1039/b802497a
  34. Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23. https://doi.org/10.1021/ar800003f
  35. Gale, P. A. Chem. Commun. 2008, 4525.
  36. Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. https://doi.org/10.1021/cr068046j
  37. Anslyn, E. V. J. Org. Chem. 2007, 72, 687. https://doi.org/10.1021/jo0617971
  38. Gunnlaugsson, T.; Ali, P. H. D. ; Glynn, M.; Kruger, P. E.; Hussey G. M.; Pfeffer, F. M.; Martinez-Manez, R.; Sancemon, F. J. Fluor. 2005, 15, 267. https://doi.org/10.1007/s10895-005-2626-z
  39. dos Santos, C. M. G.; Tierney, J. J. Fluor. 2005, 15, 287. https://doi.org/10.1007/s10895-005-2627-y
  40. Schmidtchen, F. P. Top. Curr. Chem. 2005, 255, 1.
  41. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  42. Geddes, C. D. Meas. Sci. Technol. 2001, 12, R53. https://doi.org/10.1088/0957-0233/12/9/201
  43. Fabbrizzi, L.; Lichelli, M.; Rabaioli, G.; Taglietti, A. Coord. Chem. Rev. 2000, 205, 85. https://doi.org/10.1016/S0010-8545(00)00239-3
  44. Robertson, A.; Shinkai, S. Coord. Chem. Rev. 2000, 205, 157. https://doi.org/10.1016/S0010-8545(00)00243-5
  45. Singh, N.; Jang, D. O. Org. Lett. 2007, 9, 1991. https://doi.org/10.1021/ol070592r
  46. Ming, Y.; Hai, L.; Huakuan, L. Supra. Chem. 2008, 20, 357. https://doi.org/10.1080/10610270701258667
  47. Vetrichelvan, M.; Nagarajan, R.; Valiyaveettil, S. Macromolecules 2006, 39, 8303. https://doi.org/10.1021/ma0613537
  48. dos Santos, C. M. G.; Glynn, M.; McCabe, T.; de Melo, J. S. S.; Burrows, H. D.; Gunnlaugsson, T. Supra. Chem. 2008, 20, 407.
  49. Singh, N.; Jung, H. J.; Jang, D. O. Tetrahedron Lett. 2009, 50, 71. https://doi.org/10.1016/j.tetlet.2008.10.088
  50. Lin, W.; Yuan, L.; Cao, X.; Chen, B.; Feng, Y. Sensors and Actuators B: Chemical 2009, 138, 637. https://doi.org/10.1016/j.snb.2009.02.036
  51. Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. J. Org. Chem. 2007, 72, 7497. https://doi.org/10.1021/jo070439a
  52. Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. Tetrahedron Lett. 2006, 47, 9333. https://doi.org/10.1016/j.tetlet.2006.10.112
  53. Evans, A. J.; Matthews, S. E.; Cowley, A. R.; Beer, P. D. Dalton Trans. 2003, 4644.
  54. Kim, J. S.; Jung, H. S.; Kim, H. J.; Vicens, J. Tetrahedron Lett. 2009, 50, 983. https://doi.org/10.1016/j.tetlet.2008.12.026
  55. Kim, J. S.; Kim, S. H.; Kim, H. J.; Lee, Y. O.; Vicens, J. Tetrahedron Lett. 2006, 47, 4373-4377. https://doi.org/10.1016/j.tetlet.2006.04.093
  56. Matthews, S. E.; Beer, P. D. Supramolecular Chemistry 2006, 17, 411. https://doi.org/10.1080/10610270500127089
  57. Matthews, S. E.; Beer, P. D. In Calixarenes 2001; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J., Eds., Kluwer: Dordrecht, Holland, 2001.
  58. Tornoe, C. W.; Christensen C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. https://doi.org/10.1021/jo011148j
  59. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  60. Huisgen, R.; Szeimies, G.; Mobius, L. Chem. Ber. 1967, 100, 2494. https://doi.org/10.1002/cber.19671000806
  61. Lutz, J-F. Angew. Chem. Int. Ed. 2007, 46, 1018. https://doi.org/10.1002/anie.200604050
  62. Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. https://doi.org/10.1039/b613014n
  63. Angell, Y. L.; Burgess, K. Chem. Soc. Rev. 2007, 36, 1674. https://doi.org/10.1039/b701444a
  64. Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369. https://doi.org/10.1039/b700809k
  65. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Organic Lett. 2004, 6, 2853. https://doi.org/10.1021/ol0493094
  66. Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Org. Lett. 2005, 7, 4907. https://doi.org/10.1021/ol051844w
  67. Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J. Org. Chem. 2006, 71, 3928. https://doi.org/10.1021/jo060321e
  68. Bastero, A.; Font, D.; Pericàs, M. A. J. Org. Chem. 2007, 72, 2460. https://doi.org/10.1021/jo0624952
  69. Ornelas, C.; Ruis Aranzaes, J.; Cloutet, E.; Alves, S.; Astruc, D. Angew. Chem. Int. Ed. 2007, 46, 872. https://doi.org/10.1002/anie.200602858
  70. Ornelas, C.; Ruis Aranzaes, J.; Salmon, L.; Astruc, D. Chem. Eur. J. 2008, 14, 50. https://doi.org/10.1002/chem.200701410
  71. Huang, S.; Clark, R. J.; Zhu, L. Org. Lett. 2007, 9, 4999. https://doi.org/10.1021/ol702208y
  72. David, O.; Maisonneuve, S.; Xie, J. Tetrahedron Lett. 2007, 48, 6527. https://doi.org/10.1016/j.tetlet.2007.07.071
  73. Park, S-Y.; Yoon, J.; Hong, C. S.; Souane, R.; Kim, J. S.; Matthews, S. E.; Vicens, J. J. Org. Chem. 2008, 73, 8212. https://doi.org/10.1021/jo8012918
  74. Chang, K-C.; Su, I-H.; Lee, G-H.; Chung, W-S. Tetrahedron Lett. 2007, 48, 7274. https://doi.org/10.1016/j.tetlet.2007.08.045
  75. Chang, K-C.; Su, I-H.; Senthilvelan, A.; Chung, W-S. Org. Lett. 2007, 9, 3363. https://doi.org/10.1021/ol071337+
  76. Colasson, B.; Save, M.; Milko, P.; Roithova, J.; Schroder, D.; Reinaud, O. Org. Lett. 2007, 9, 4987. https://doi.org/10.1021/ol701850t
  77. Zhan, J.; Tian, D.; Li, H. New J. Chem. 2009, 33, 725. https://doi.org/10.1039/b816467c
  78. Tzadka (Bulkhatsev) E.; Goldberg, I.; Vigalok, A. Chem. Comm. 2009, 2041.
  79. Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. J. Amer. Chem. Soc. 2004, 126, 15366. https://doi.org/10.1021/ja0450408
  80. Jurwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. Angew. Chem. Int. Ed. 2008, 47, 3740. https://doi.org/10.1002/anie.200800548
  81. Kumar, A.; Pandey, P. S. Org. Lett. 2008, 10, 165. https://doi.org/10.1021/ol702457w
  82. Morales-Sanfrutos, J.; Ortega-Munoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. J. Org. Chem. 2008, 73, 7768. https://doi.org/10.1021/jo801325c
  83. Li, Y.; Flood, A. H. Angew. Chem. Int. Ed. 2008, 47, 2649. https://doi.org/10.1002/anie.200704717
  84. Li, Y.; Flood, A. H. J. Am. Chem. Soc. 2008, 130, 12111. https://doi.org/10.1021/ja803341y
  85. Ornelas, C.; Ruiz Aranzaes, J.; Cluotet, E.; Alves, S.; Astruc, D. Angew. Chem. Int. Ed. 2007, 46, 872. https://doi.org/10.1002/anie.200602858
  86. Asfari, Z.; Bilyk, A.; Bond, C.; Harrowfield, J. M.; Koutsantonis, G. A.; Lengkeek, N.; Mocerino, M.; Skelton, B. W.; Sobolev, B. N.; Strano, S.; Vicens, J.; White, A. H. Org. Biomol. Chem. 2004, 2, 387. https://doi.org/10.1039/b308214h
  87. Chetcuti, M. J.; Devoille, A. M. J.; Ben Othman, A.; Souane, R.; Thuery, P.; Vicens, J. Dalton Trans. 2009, 16, 2999.
  88. Hooft, R. W. W. COLLECT; Nonius BV: Delft, The Netherlands, 1998.
  89. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307. https://doi.org/10.1016/S0076-6879(97)76066-X
  90. Sheldrick, G. M. Acta Crystallogr., Section A 2008, 64, 112. https://doi.org/10.1107/S0108767307043930

Cited by

  1. Chemical sensors that incorporate click-derived triazoles vol.40, pp.5, 2011, https://doi.org/10.1039/c0cs00143k
  2. Anion receptor chemistry: highlights from 2010 vol.41, pp.1, 2012, https://doi.org/10.1039/C1CS15257B
  3. Click synthesis of triazole-linked calix[4]arene ionophores. Potentiometric and ESI-MS screening of ion-selectivity vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0289-y
  4. β-Sheet-like Hydrogen Bonds Interlock the Helical Turns of a Photoswitchable Foldamer To Enhance the Binding and Release of Chloride vol.79, pp.17, 2014, https://doi.org/10.1021/jo501595k
  5. Study by fluorescence of calix[4]arenes bearing heterocycles with anions: highly selective detection of iodide vol.80, pp.3-4, 2014, https://doi.org/10.1007/s10847-014-0418-2
  6. Calix[4]arene Based Highly Efficient Fluorescent Sensor for Au3+ and I− vol.25, pp.5, 2015, https://doi.org/10.1007/s10895-015-1642-x
  7. 1,2,3,-Triazole-Based Catalysts: From Metal- to Supramolecular Organic Catalysis vol.17, pp.5, 2017, https://doi.org/10.1002/tcr.201600104
  8. Fixing the Conformation of Calix[4]arenes: When Are Three Carbons Not Enough? vol.24, pp.17, 2018, https://doi.org/10.1002/chem.201705955
  9. Synthesis of 3,5-diaryl substituted indole derivatives and its selective iodide ion chemosensing vol.86, pp.None, 2010, https://doi.org/10.1016/j.saa.2011.10.067
  10. A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+and Iin aqueous media vol.5, pp.46, 2015, https://doi.org/10.1039/c5ra02692j
  11. Supramolecular Luminescent Sensors vol.119, pp.1, 2010, https://doi.org/10.1021/acs.chemrev.8b00260