DOI QR코드

DOI QR Code

The Development of Imitated Cheese Using Whole Milk Powder and Fermented Milk

전지분유와 발효유를 이용한 치즈 유사품개발

  • Jo, Ae-Ri (Division of Animal Science, Sahmyook University) ;
  • Noh, Hae-Won (Division of Animal Science, Sahmyook University) ;
  • Kim, Kee-Sung (Material Utilization Research Group, Korea Food Research Institute) ;
  • Chung, Keun-Hee (Division of Animal Science, Sahmyook University) ;
  • Jeon, Woo-Min (Division of Animal Science, Sahmyook University)
  • 조애리 (삼육대학교 동물과학부) ;
  • 노해원 (삼육대학교 동물과학부) ;
  • 김기성 (한국식품연구원 소재이용연구단) ;
  • 정근희 (삼육대학교 동물과학부) ;
  • 전우민 (삼육대학교 동물과학부)
  • Published : 2010.02.28

Abstract

Imitated cheese was prepared from whole milk powder and fermented milk and the moisture content, general components, noncasein nitrogen, nonprotein nitrogen and free amino acids were analyzed to determine the optimal ripening conditions needed to produce imitated cheese that was similar to natural cheese. The moisture content of the imitated cheese was 40.27% one day after being produced. The cheese was ripened using two different methods; at $12^{\circ}C$ with vacuum sealing and at $12^{\circ}C$ and 95% RH with a spray of Penicillium camemberti. The lactose content decreased rapidly from 24.64 to 5.43% at the $4^{th}$ wk of ripening when it was ripened with Penicillium camemberti. The degradation of protein by mold ripening in the imitated cheese was more rapid than that of vacuum sealing. The flavor and body texture were optimal at the $4^{th}$ wk ripening. The noncasein nitrogen and nonprotein nitrogen content increased from 28.10 to 54.05, and from 6.58 to 23.06 mg/mL, respectively, when ripened with P. camemberti. When the cheese was ripened at $12^{\circ}C$, 95% R.H with P. camemberti after 4 wks, all free amino acids increased significantly except asparagines. The total free amino acid and bitter amino acid concentrations increased from 8.40 to 34.87, and from 1.53 to 10.02 nmol/mg, respectively. When the imitated cheese was prepared, the protein degradation and flavor of the cheese was better when ripened with P. camemberti.

재고 분유를 이용하기 위하여 유청 배출없이 전지 분유와 발효유를 혼합하여 모조 치즈를 제조하였으며, 숙성 환경과 숙성 기간의 차이를 관찰하여 자연 치즈와 유사한 성질을 나타내는 최적의 숙성 조건을 규명하기 위하여 수분함량 변화, 일반성분, 비카제인태 질소화합물, 비단백태 질소화합물 그리고 유리 아미노산 등의 변화를 관찰하였다. 본 모조 치즈는 제조 후 건조 1일째가 수분함량이 40.27%로 가장 적합하였고, 이들은 진공 포장한 후 $12^{\circ}C$에서 숙성하는 방법과 P. camemberti 곰팡이를 분무한 후 $12^{\circ}C$, 95% RH에서 숙성하는 두 가지 방법으로 숙성하였다. 곰팡이 숙성 시 유당 함량이 24.64%에서 4주 숙성 시 5.43%로 급격히 감소하는 현상이 있었으나 진공 포장 숙성 시에는 유당의 변화가 심하지 않았다. 또한 진공 포장 숙성 시 비카제인태 질소 및 비단백태 질소는 숙성 4주 이후에 각각 28.10 mg/mL에서 50.61 mg/mL으로, 6.58 mg/mL에서 21.59 mg/mL으로 증가하였으며, 곰팡이 숙성 시 비카제인태 질소 및 비단백태 질소는 숙성 4주 이후에 각각 28.10 mg/mL에서 54.05 mg/mL으로, 6.58 mg/mL에서 23.06 mg/mL으로 증가하였다. 진공 포장 숙성 시 4주간의 유리 아미노산 차이를 측정한 결과, arginine, tyrosine, leucine이 두드러진 증가를 보였다. 그리고 총 유리 아미노산이 7.73 nmol/mg에서 9.29 nmol/mg으로 증가하였고, bitter amino acid는 1.36 nmol/mg에서 2.43 nmol/mg으로 증가하였다. 또한 곰팡이 숙성 시 4주간의 유리 아미노산을 측정한 결과, asparagine을 제외한 모든 유리 아미노산이 두드러진 증가를 보였다. 총 유리 아미노산이 8.40 nmol/mg에서 34.87 nmol/mg로 증가하였고, bitter amino acid는 1.53 nmol/mg에서 10.02 nmol/mg로 증가하였다. 치즈 유사품 제조 시에 P. camemberti를 이용한 치즈가 P. camemberti 를 이용하지 않는 치즈보다 단백질 분해 정도나 풍미가 더 우수한 것으로 나타났다.

Keywords

References

  1. Auberger, B., Lenoir, J., and Bergère, J. L. (1997) Partial caracterisation of exopeptidases produced by a strain of Geotrichum candidum. Sci. Aliment 17, 655-670.
  2. Addeo, F., Chianese, L., Salzano, A., Sacchi, R., Cappuccio, U., Ferranti. P., and Malorni, A. (1992) Characterization of the 12% trichloroacetic acid-insoluble oligopeptides of Parmigiano- Reggiano cheese. J. Dairy Res. 59, 401-411. https://doi.org/10.1017/S0022029900030673
  3. Aston, J. W., Durward, I. G., and Dulley, J. R. (1983) Proteolysis and flavour development in Cheddar cheese. Aust. J. Dairy Technol. 38, 55-59.
  4. Benfeldt, C., Sorensen, J., Ellegard, K. H., and Petersen, T. E. (1997) Heat treatment of cheese milk; effect on plasmin activity and proteolysis during cheese ripening. Int. Dairy J. 7, 723-731. https://doi.org/10.1016/S0958-6946(97)00083-6
  5. Bergamini, C. V., Hynes, E. R., and Zalazar, C. A. (2006) Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese. Int. Dairy J. 16, 856-866. https://doi.org/10.1016/j.idairyj.2005.09.004
  6. Boutrou, R., Kerriou, L., and Gassi, J. Y. (2006) Contribution of Geotrichum candidum to the proteolysis of soft cheese. Int. Dairy J. 16, 775-783. https://doi.org/10.1016/j.idairyj.2005.07.007
  7. Cliffe, A. J., Marks, J. D., and Mulholland, F. (1993) Isolation and characterization of non-volatile flavours from cheese: peptide profile of flavour fractions from Cheddar cheese, determined by reverse-phase high performance liquid chromatography. Int. Dairy J. 3, 379-387. https://doi.org/10.1016/0958-6946(93)90024-T
  8. Duggan, E., Noronga, N., O'Riordan, E. D., and O0$\phi$Sullivan, M. (2008) Effect of resistant starch on the water binding properties of imitation cheese. J. Food Eng. 84, 108-115. https://doi.org/10.1016/j.jfoodeng.2007.04.028
  9. Fenelon, M. A., Ryan, M. P., Rea, M. C., Guinee, T. P., Ross, R. P., Hill, C., and Harrington, D. (1999) Elevated temperature ripening of reduced fat Cheddar made with or without lacticin 3147-producing starter culture. J. Dairy Sci. 82, 10-22. https://doi.org/10.3168/jds.S0022-0302(99)75203-3
  10. Fenelon, M. A., O'Connor, P., and Guinee, T. P. (2000) The effect of fat content on the microbiology and proteolysis in Cheddar cheese during ripening. J. Dairy Sci. 83, 2173-2183. https://doi.org/10.3168/jds.S0022-0302(00)75100-9
  11. Gagnaire, V., Thierry, A., and Leonil, J. (2001) Propionibacteria and facultatively heterofermentative lactobacilli weakly contribute to secondary proteolysis of Emmental cheese. Lait. 81, 339-353. https://doi.org/10.1051/lait:2001136
  12. Hannon, J. A., Kilcawley, K. N., Wilkinson, M. G., Delahunty, C. M. and Beresford, T. P. (2006) Production of ingredient-type Cheddar cheese with accelerated flavor development by addition of enzyme-modified cheese powder. J. Dairy Sci. 89, 3749-3762. https://doi.org/10.3168/jds.S0022-0302(06)72416-X
  13. Hannon, J. A., Kilcawley, K. N., Wilkinson, M. G., Delahunty, C. M., and Beresford, T. P. (2007) Flavour precursor development in Cheddar cheese due to lactococcal starters and the presence and lysis of Lactobacillus helveticus. Int. Dairy J. 17, 316-327. https://doi.org/10.1016/j.idairyj.2006.03.001
  14. Hickey D. K., Kilcawley K. N., Beresford T. P., Sheehan E. M., and Wilkinson M .G., (2006) The influence of a seasonal milk supply on the biochemical and sensory properties of Cheddar cheese. Int. Dairy J. 16, 679-690. https://doi.org/10.1016/j.idairyj.2005.10.017
  15. Irigoyen, A., Izco, J. M., Ibanez, F. C., and Torre, P. (2002) Influence of calf or lamb rennet on the physicochemical, proteolytic, and sensory characteristics of an ewe's-milk cheese. Int. Dairy J. 12, 27-34. https://doi.org/10.1016/S0958-6946(01)00147-9
  16. Jordana, K., Kenny, O., FIitzGerald R. J., O'Cuinn, G., and Beresford, T. (2006) Autolysis of selected Lactobacillus helveticus adjunct strains during Cheddar cheese ripening. Int. Dairy J. 16, 797-804. https://doi.org/10.1016/j.idairyj.2005.07.008
  17. Kubíckova, J. and Grosch, W. (1998) Evaluation of flavour compounds of Camembert cheese. Int. Dairy J. 8, 11-16. https://doi.org/10.1016/S0958-6946(98)00015-6
  18. Lowry, O. H., Rosebrough, N. R., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  19. Lynch, C. M., Muir, D. D., Banks, J. M., McSweeney, P. L. H., and Fox, P. F. (1999) Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or Lactobacillus plantarum on Cheddar cheese ripening. J. Dairy Sci. 82, 1618- 1628. https://doi.org/10.3168/jds.S0022-0302(99)75390-7
  20. McSweeney, P. L. H. and Fox, P. F. (1997) Indices of Cheddar cheese ripening. Proceed. 5th Cheese Sym., National Dairy Products Research Centre, Moorepark, Fermoy, Co., Cork, Ireland, pp. 73-89.
  21. Noronha, N., O'Riordan, D. and O'Sullivan, M. (2008) Flavouring of imitation cheese with enzyme modified cheeses (EMCs): Sensory impact and measurement of aroma active short chain fatty acids (SCFAs). Food Chem. 106, 905-913. https://doi.org/10.1016/j.foodchem.2007.06.059
  22. O'Donovan, C., Wilkinson, M. G., Guinee, T. P., and Fox, P. F. (1996) An investigation into the autolytic properties of three lactococcal strains during cheese ripening. Int. Dairy J. 6, 1149-1165. https://doi.org/10.1016/S0958-6946(96)00024-6
  23. Puchades, R., Lemieux, L., and Simard, R. E. (1989) Evolution of free amino acids during the ripening of Cheddar cheese containing added lactobacilli strains. J. Food Sci. 54, 885-888. https://doi.org/10.1111/j.1365-2621.1989.tb07905.x
  24. Shin, H. S., Kim, S. B., and Lim, J. W. (2002) Comparative study of proteolytic activities of some commercial milk clotting enzymes on bovine skim milk. J. Anim. Sci. Technol. (Kor.) 44, 801-808. https://doi.org/10.5187/JAST.2002.44.6.801
  25. Song, W. S., Kim, Y. H., Hwang, H. H., Kim, E. R., and Yu, J. H. (1995) Effect of the mixing ratio raw milk, reconstituted milk, and the added contents of CaCl2 and rennet on the texture of Mozzarella cheese made by direct acidification method with continuous agitation. Korean J. Food Sci. Ani. Resour. 15, 68-73.
  26. Tejada, L., Abellan, A., Cayuela, J. M., Martinez-Cacha, A., and Fernandez-Salguero, J. (2008) Proteolysis in goats' milk cheese made with calf rennet and plant coagulant. Int. Dairy J. 18, 139-146. https://doi.org/10.1016/j.idairyj.2007.08.010
  27. Thage, B. V., Rattray, F. P., Laustsen, M. W., Ardo, Y., Barkholt. V., and Houlberg, U. (2004) Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115. J. Appl. Microbiol. 96, 593-602. https://doi.org/10.1111/j.1365-2672.2004.02163.x
  28. White, J. A., Hart, R. J., and Fry, J. C. (1986) An evaluation of the waters Pico-Tag system for the amino-acid analysis of food materials. J. Automat. Chem. 8, 170-177. https://doi.org/10.1155/S1463924686000330
  29. Wilkinson, M. G., Guinee, T. P., O'Callaghan, D. M., and Fox, P. F. (1994) Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. J. Dairy Res. 61, 249-262. https://doi.org/10.1017/S0022029900028260
  30. Yvon. M. and Rijnen, L. (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11, 185-201. https://doi.org/10.1016/S0958-6946(01)00049-8

Cited by

  1. Texture and Sensory Properties of Cream Cheese and Cholesterol-removed Cream Cheese made from Whole Milk Powder vol.32, pp.1, 2012, https://doi.org/10.5851/kosfa.2012.32.1.49
  2. Quality Characteristics of Sulgidduk (a Traditional Korean Rice Cake) Admixed with Cheese Powder vol.18, pp.1, 2011, https://doi.org/10.11002/kjfp.2011.18.1.039
  3. Quality properties of whole milk powder on chicken breast emulsion-type sausage vol.63, pp.2, 2021, https://doi.org/10.5187/jast.2021.e30