DOI QR코드

DOI QR Code

Structure and Thermal Properties of SnO2-(1-x)P2O5-xB2O3 Glasses

SnO2-(1-x)P2O5-xB2O3 유리의 열적, 구조적 특성

  • An, Yong-Tae (Korea Institute of Ceramics Engineering & Technology, Optical-Electro Materials Laboratory) ;
  • Choi, Byung-Hyun (Korea Institute of Ceramics Engineering & Technology, Optical-Electro Materials Laboratory) ;
  • Ji, Mi-Jung (Korea Institute of Ceramics Engineering & Technology, Optical-Electro Materials Laboratory) ;
  • Chang, Woo-Suk (Korea Institute of Ceramics Engineering & Technology, Optical-Electro Materials Laboratory) ;
  • Bae, Hyun (ShinCeramic CO. Ltd.) ;
  • Hwang, Hae-Jin (School of Material Sciernce (Science) and Engineering, Inha University)
  • 안용태 (한국세라믹기술원 광.전자세라믹본부 전자소재팀) ;
  • 최병현 (한국세라믹기술원 광.전자세라믹본부 전자소재팀) ;
  • 지미정 (한국세라믹기술원 광.전자세라믹본부 전자소재팀) ;
  • 장우석 (한국세라믹기술원 광.전자세라믹본부 전자소재팀) ;
  • 배현 (신세라믹주식회사) ;
  • 황해진 (인하대학교 세라믹공학과)
  • Published : 2010.03.31

Abstract

$SnO_2-(1-x)P_2O_5-xB_2O_3$ glass system were prepared by melt-quenching technique in the compositional series containing 50, 55 and 60 mol% of $SnO_2$. Local structure of the glasses was investigated by Raman and FT-IR measurements. A large glass-forming region was found at the phosphate side of the ternary system with homogeneous glasses containing up to 5~25 mol% of $B_2O_3$. According as content of $B_2O_3$ increases, theraml expansion coefficient of glass decreased but transition temperature and softening temperature increased. Because these phenomenon changed local structure of glass. According as content of $B_2O_3$ increases, quantity of bridging oxygen increased. Also, according as content of $SnO_2$ increases, confirmed that quantity of non-bridging oxygen increases.

Keywords

References

  1. B.-H. Choi, M.-J. Ji, Y.-T. An, Y.-S. Ko, and Y.-H. Lee, “Effects of Substituting $B_2O_3$ for $P_2O_5$ on the Structure and Properties of $P_2O_5-SnO_2$ Glass System(in Korean),” J. Kor. Ceram. Soc., 45 [8] 459-63 (2008). https://doi.org/10.4191/KCERS.2008.45.8.459
  2. B.-H. Choi, “Technical Development Trend for PDP Device Material,” Information display, 8 [1] 10-1 (2007). https://doi.org/10.1080/15980316.2007.9652020
  3. R. Morena, “Phosphate Glasses as Alternatives to Pb-based Sealing Frit,” J. of Non-cry. Solids, 263-64 382-87 (2000). https://doi.org/10.1016/S0022-3093(99)00678-X
  4. Y.-T. An, B.-H. Choi, M.-J. Ji, J.-M. Lee, H.-S. Kim, and K.-W. Jung, “Dielectric Characteristics on Filler Content and Sintering Temperature in Pb-Free White Dielectric Layer,” J. KIEEME., 21 [8] 755-59 (2008). https://doi.org/10.4313/JKEM.2008.21.8.755
  5. A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, and M. Tatsumisago, “Preparation and Characterization of $SnOP_2O_5$ Glasses as Anode Materials for Lithiun Secondary Batteries,” J. Non-Cryst. Solids, 345&346 478-83 (2004).
  6. A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, Y. Himei, Y. Miura, and M. Katada, “Structural Investigation of $SnO-B_2O_3$ Glasses by Solid-state NMR and X-ray Photoelectron Spectroscopy,” J. Non-Cryst. Solids, 306 227-37 (2002). https://doi.org/10.1016/S0022-3093(02)01169-9
  7. J. S. Jeon, M. R. Cha, N. S. Kim, and H. S. Kim, “Effect of Frit Content in Ag Paste and Thickness of Transparent Dielectric on Yellowing Phenomenon,” Mat. Sci. Forum, 506 510-11 (2006).
  8. M. Tatsumisago, Y. Kowada, and T. Minami, “Structure of Rapidly Quenched Lithium Phosphate Glasses,” Phys. Chem. Glasses, 29 63-6 (1998).
  9. R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short-range Structure of Zinc Polyphosphate Glass,” J. Non-Cryst. Solids, 191 45-55 (1995). https://doi.org/10.1016/0022-3093(95)00289-8

Cited by

  1. Effects of substituting B2O3 for P2O5 on the structures and properties of V2O5-P2O5 glass systems vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2093-z