DOI QR코드

DOI QR Code

Electronic Structures and Noncollinear Magnetic Properties of Structurally Disordered Fe

  • Park, Jin-Ho (Department of Physics, Pohang University of Science and Technology) ;
  • Min, B.I. (Department of Physics, Pohang University of Science and Technology)
  • Published : 2010.03.31

Abstract

The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structurally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion method was used in the local spin density approximation. Compared to the crystalline system, the electronic structures of the disordered systems were characterized by a broadened band width, smoothened local density of states, and reduced local magnetic moment. The magnetic structures depend on the short range configurations. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the noncollinear spin spiral structure is more stable for a fcc-based system.

Keywords

References

  1. R. C. O'Handley, in Amorphous Metallic Alloys, edited by F. E. Luborsky, BMM, Butterworths, London (1983).
  2. M. L. Fdez-Gubieda, A. Garcia-Arribas, J. M. Barandiaran, R. L. Anton, I. Orue, P. Gorria, S. Pizzini, and A. Fontaine, Phys. Rev. B 62, 5746 (2000). https://doi.org/10.1103/PhysRevB.62.5746
  3. N. Saito, H. Hiroyoshi, K. Fukamichi, and Y. Nakagawa, J. Phys. F 16, 911 (1986). https://doi.org/10.1088/0305-4608/16/7/018
  4. J. M. D. Coey, D. Givord, A. Lienard, and J. P. Rebouillat, J. Phys. F 11, 2707 (1981). https://doi.org/10.1088/0305-4608/11/12/018
  5. H. Wakabayashii, K. Fukamichi, H. Komatsu, T. Goto, T. Sakakibara, and K. Kuroda, in Proceedings of the International Symposium on Physics of Magnetic Materials 1986, World Scientic, Singapore (1987).
  6. H. Ma, H. P. Kunkel, and G. Williams, J. Phys.: Condens Matter 3, 5563 (1991). https://doi.org/10.1088/0953-8984/3/29/010
  7. J. J. Croat and J. F. Herbst, J. Appl. Phys. 53, 2294 (1982). https://doi.org/10.1063/1.330841
  8. D. W. Forester, N. C. Koon, J. H. Schelleng, and J. J. Rhyne, J. Appl. Phys. 50, 7336 (1979). https://doi.org/10.1063/1.326926
  9. R. Hasegawa and R. Ray, J. Appl. Phys. 49, 4174 (1978). https://doi.org/10.1063/1.325328
  10. C. L. Chien, D. Musser, E. M. Gyorgy, R. C. Sherwood, H. S. Chen, F. E. Luborsky, and J. L. Walter, Phys. Rev. B 20, 283 (1979). https://doi.org/10.1103/PhysRevB.20.283
  11. Y. Kakehashi, Phys. Rev. B 43, 10 820 (1991) https://doi.org/10.1103/PhysRevB.43.10820
  12. T. Uchida and Y. Kakehashi, Phys. Rev. B 64, 54402 (2001). https://doi.org/10.1103/PhysRevB.64.054402
  13. M. Yu and Y. Kakehashi, Phys. Rev. B 49, 15723 (1994). https://doi.org/10.1103/PhysRevB.49.15723
  14. J. Hafner, M. Tegze, and Ch. Becker Phys. Rev. B 49, 285 (1994). https://doi.org/10.1103/PhysRevB.49.285
  15. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984) https://doi.org/10.1103/PhysRevLett.53.2571
  16. O. Jepsen and M. Sob, in Electronic Band Structure and its Applications, edited by M. Yussou, Lecture Notes in Physics Vol. 283, Springer, Berlin (1987).
  17. R. Lorenz and J. Hafner, J. Magn. Magn. Mater. 139, 209 (1995). https://doi.org/10.1016/0304-8853(95)90049-7
  18. D. Spisak, J. Hafner, and R. Lorenz, J. Magn. Magn. Mater. 166, 303 (1997). https://doi.org/10.1016/S0304-8853(96)00456-8
  19. M. Liebs, K. Hummler, and M. Fohnle, Phys. Rev. B 51, 8664 (1995). https://doi.org/10.1103/PhysRevB.51.8664
  20. T. Fujiwara, J. Phys. F: Met. Phys. 12, 661 (1982). https://doi.org/10.1088/0305-4608/12/4/009
  21. T. Fujiwara, J. Non-Cryst. Solids 61 and 62, 1039 (1984).
  22. H. J. Nowak, O. K. Andersen, T. Fujiwara, O. Jepsen, and P. Vargas, Phys. Rev. B 44, 3577 (1991). https://doi.org/10.1103/PhysRevB.44.3577
  23. A. M. Bratkovsky and A. V. Smirnov, Phys. Rev. B 48, 9606 (1993). https://doi.org/10.1103/PhysRevB.48.9606
  24. U. Krey, S. Krompiewski, and U. Krauss, J. Magn. Magn. Mater. 86, 85 (1990). https://doi.org/10.1016/0304-8853(90)90088-8
  25. U. Krey, U. Krauss, and S. Krompiewski, J. Magn. Magn. Mater. 103, 37 (1992). https://doi.org/10.1016/0304-8853(92)90232-D
  26. R. Haydock, in Solid State Physics, edited by F. Seitz and D. Turnbull, Academic, New York (1980) Vol. 35, p. 215.
  27. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). https://doi.org/10.1103/PhysRev.94.1498
  28. J. H. Park, S. K. Kwon, and B. I. Min, J. Korean Phys. Soc. 37, 109 (2000). https://doi.org/10.3938/jkps.37.109
  29. M. V. You, V. Heine, A. J. Holden, and P. J. Lin-Chung, Phys. Rev. Lett. 44, 1282 (1980). https://doi.org/10.1103/PhysRevLett.44.1282
  30. M. V. You and V. Heine, J. Phys. F: Met. Phys. 12, 177 (1982). https://doi.org/10.1088/0305-4608/12/1/016
  31. R. Yamamoto and M. Doyama, J. Phys. F 9, 617 (1979). https://doi.org/10.1088/0305-4608/9/4/008
  32. S. Ohnuma, K. Shirakawa, M. Nose, and T. Masumoto, IEEE Trans. Magn. 16, 1129 (1980). https://doi.org/10.1109/TMAG.1980.1060749

Cited by

  1. Structural and Magnetic Study of ${\rm Fe}_{76}{\rm Si}_{9}{\rm B}_{10}{\rm P}_{5}$ Metallic Glass by First Principle Simulation vol.50, pp.4, 2014, https://doi.org/10.1109/TMAG.2013.2288974