DOI QR코드

DOI QR Code

Development and Application of Dynamic Water Quality Model in Nakdong River

동적수질해석모형의 개발과 낙동강에의 적용

  • Kwon, Na-Young (School of Archi. & Civil Engineering, Kyungpook National Univ.) ;
  • Choi, Hyun-Gu (School of Archi. & Civil Engineering, Kyungpook National Univ.) ;
  • Yu, Jae-Jung (Nakdong River Water Quality Research Center, National Institute of Environmental Research) ;
  • Han, Kun-Yeun (School of Archi. & Civil Engineering, Kyungpook National Univ.)
  • 권나영 (경북대학교 공과대학 건축.토목공학부) ;
  • 최현구 (경북대학교 공과대학 건축.토목공학부) ;
  • 유재정 (국립환경과학원 낙동강물환경연구소) ;
  • 한건연 (경북대학교 공과대학 건축.토목공학부)
  • Published : 2010.03.31

Abstract

The objective of this study is to develop an accurate and stable dynamic water quality model which is capable of reflecting various flows and irregular cross sections and handling numerical oscillations under the low flow conditions. In order to solve the oscillation problem under the low flow conditions, diffusive wave method was applied to the low flow condition in developing a hydraulic model, DyHYD. DyQUAL is also developed as a water quality model to calculate up to 12 water quality variables including autochthonous BOD, water temperature, DO, TN and TP. The developed model is applied to both hypothetical river channels and actual Nakdong river watershed. Additionally, the applicability and reliability of the models are verified by comparing simulation results with observed values. Nash-Sutcliffe coefficients are estimated by comparison between simulation results and observed values. In the calibration and verification process, the coefficients varies from 0.391 to 0.591 and 0.704 to 0.902 for discharge, BOD, TN and TP, respectively.

본 연구의 목적은 저유량에서 발산하는 문제를 해결하여 다양한 흐름과 불규칙한 하도단면을 반영하는 안정적이고 정교한 동적수질해석모형을 개발하는데 있다. 이에 본 연구에서는 기존 모형들의 저유량에서 발산하는 문제를 해결하고자 확산파 운동방정식 기법을 이용하여 수리해석모형인 DyHYD를 개발하였으며, 수질해석모형은 자생 BOD와 수온, DO, TN, TP 등 12가지 수질농도를 계산할 수 있는 DyQUAL을 개발하였다. 개발된 모형의 적용성을 검토하기 위하여 가상하도 및 실제 낙동강유역에서 모의를 수행한 후 실측치와 비교 검토함으로써 모형의 적용성과 신뢰성을 검토하였다. 모형의 수행결과를 관측치와의 비교를 통해 Nash-Sutcliffe 계수를 산정하였으며, 보정과정에서는 유량과 BOD, TN, TP의 Nash-Sutcliffe 계수는 0.391에서 0.591의 범위를 나타내며, 검증과정에서는 0.704에서 0.902의 범위를 나타내었다.

Keywords

References

  1. 국립환경과학원(2009). 수질오염총량관리를 위한 '08 낙동강수계 목표수질측정망 운영결과 보고서. pp. 178-187.
  2. 고익환, 노준우, 김영도(2005). “정상 및 비정상상태 하천수질모형의 비교”. 한국수자원학회 논문집, 제38권, 제6호, pp. 505-515. https://doi.org/10.3741/JKWRA.2005.38.6.505
  3. 노준우, 이상욱, 정세웅(2008). “유역통합수자원관리를 위한 하천수질 예측시스템의 개발 및 적용”. 한국수자원학회지, 제41권, 제1호, pp. 33-38.
  4. 노준우, 이상욱, 정성태(2008). “동적하천수질모형을 활용한 증가방류 모의”. 한국수자원학회지, 제41권, 제10호, pp. 48-51.
  5. 정세웅(2004). “저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용”. 한국수자원학회논문집, 제37권, 제10호, pp. 857-868. https://doi.org/10.3741/JKWRA.2004.37.10.857
  6. Amein, M. (1968). “An implicit method for numerical flood routing”. Water Resources Research, Vol. 4, No. 8, pp. 719-726. https://doi.org/10.1029/WR004i004p00719
  7. Delong, L.L. (1986). Extension of the unsteady one-dimensional open-channel flow equations for the flow simulation in meandering channels with flood plains. Hydrologic Sciences, United States Geological Survey Water-Supply, Paper 2220, December, pp. 101-105.
  8. Environmental Laboratory, U.S. Army Corps of Engineers, WES. (1995). CE-QUAL-RIV1: A Dynamic, One-Dimensional (Longitudinal) Water Quality Model for Steams. User's Manual. USACE, WES, Vicksburg, MS, USA.
  9. Fread, D.L. (1988). The NWS DAMBRK model: theoretical background/user documentation. Office of Hydrology, National Weather Service NWS, Md.
  10. Fread, D.L., Jin, M., and Lewis, J.M. (1996). “An LPI Numerical Implicit Solution for Unsteady Mixed- Flow Simulation”. North American Water and Environment Congress '96, ASCE, Anaheim, CA, USA.
  11. McQuivey, R.S., and Keefer, T.N. (1974). “Simple method for predicting dispersion in streams”. J Environ Eng Div, ASCE 100 (EE4), pp. 997-1011.
  12. Motovilov, Y. G., Gottschalk, L., Engeland, K., and Rohde, A. (1999). “Validation of a distributed hydrological model against spatial observations”. Agricultural and Forest Meteorology, Vol. 98, pp. 257-277. https://doi.org/10.1016/S0168-1923(99)00102-1
  13. Parker, G.T., Droste, R.L., and Kennedy, K.J. (2007). “Modeling the Effect of Agricultural Best management Practices on Water Quality Under Various Climastic Scenarios”. Journal of Environmental Engineering and Science, Vol. 7, pp. 9-19. https://doi.org/10.1139/S07-026
  14. Rochelle, A. Nustad, and Jerad, D.B. (2006). Simulation of Constituent Transport in the Red River of the North Basin, North Dakota and Minnesota, During Unsteady-Flow Conditions, 1977 and 2003-04. Scientific Investigations Report 2006-5296, USGS, pp. 1-5.
  15. Singh, U.P., Ranga Raju, K.G., and Garde, R.J. (1987). “Longitudinal dispersion coefficient in open channels”. Proc. of IAHR 22th Congress, pp. 251-257.
  16. Zhang, M.L., Shen, Y.M., and Guo, Y. (2008). “Development and Application of A Eutrophication Water Quality Model for River Networks”. Journal of Hydrodynamics, Vol. 20, No. 6, pp. 719-726. https://doi.org/10.1016/S1001-6058(09)60007-X

Cited by

  1. Simulation of Water Pollution Accident with Water Quality Model vol.23, pp.3, 2014, https://doi.org/10.14249/eia.2014.23.3.177