References
- B. Dubey, B. Das, and J. Hussain, A predator-prey interaction model with self and cross diffusion, Ecol. Model. 141 (2001), 67–76. https://doi.org/10.1016/S0304-3800(01)00255-1
- H. I. Freedman, Deterministic mathematical models in population ecology, Marcel Dekker, Inc., New York, 1980.
- C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can. 48 (1966), 1–86.
- S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), no. 3, 763–783. https://doi.org/10.1137/S0036139993253201
- W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl. 335 (2007), no. 1, 498–523. https://doi.org/10.1016/j.jmaa.2007.01.089
- K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations 197 (2004), no. 2, 315–348. https://doi.org/10.1016/j.jde.2003.08.003
- C. S. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. https://doi.org/10.1016/0022-0396(88)90147-7
- Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79–131. https://doi.org/10.1006/jdeq.1996.0157
- L. Niremberg, Topics in Nonlinear Function Analysis, American Mathematical Society, Providence, RI, 2001.
- P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations 200 (2004), no. 2, 245–273. https://doi.org/10.1016/j.jde.2004.01.004
- R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl. 309 (2005), no. 1, 151–166. https://doi.org/10.1016/j.jmaa.2004.12.026
- K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst. 9 (2003), no. 4, 1049–1061. https://doi.org/10.3934/dcds.2003.9.1049
- M. X. Wang, Non-constant positive steady states of the Sel’kov model, J. Differential Equations 190 (2003), no. 2, 600–620. https://doi.org/10.1016/S0022-0396(02)00100-6
- M. X. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratiodependent functional responses and diffusion, Phys. D 196 (2004), no. 1-2, 172–192. https://doi.org/10.1016/j.physd.2004.05.007
Cited by
- Cross-diffusion induced instability and pattern formation for a Holling type-II predator–prey model vol.247, 2014, https://doi.org/10.1016/j.amc.2014.08.088
- Effect of Time Delay on Spatial Patterns in a Airal Infection Model with Diffusion vol.21, pp.2, 2016, https://doi.org/10.3846/13926292.2016.1137503
- Cross-diffusion induced stationary patterns in a prey–predator system with parental care for predators vol.237, 2014, https://doi.org/10.1016/j.amc.2014.03.060