DOI QR코드

DOI QR Code

STATIONARY PATTERNS FOR A PREDATOR-PREY MODEL WITH HOLLING TYPE III RESPONSE FUNCTION AND CROSS-DIFFUSION

  • Liu, Jia (DEPARTMENT OF INFORMATION SCIENCE JIANGSU POLYTECHNIC UNIVERSITY) ;
  • Lin, Zhigui (SCHOOL OF MATHEMATICAL SCIENCE YANGZHOU UNIVERSITY)
  • Published : 2010.03.31

Abstract

This paper deals with a predator-prey model with Holling type III response function and cross-diffusion subject to the homogeneous Neumann boundary condition. We first give a priori estimates (positive upper and lower bounds) of positive steady states. Then the non-existence and existence results of non-constant positive steady states are given as the cross-diffusion coefficient is varied, which means that stationary patterns arise from cross-diffusion.

Keywords

References

  1. B. Dubey, B. Das, and J. Hussain, A predator-prey interaction model with self and cross diffusion, Ecol. Model. 141 (2001), 67–76. https://doi.org/10.1016/S0304-3800(01)00255-1
  2. H. I. Freedman, Deterministic mathematical models in population ecology, Marcel Dekker, Inc., New York, 1980.
  3. C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can. 48 (1966), 1–86.
  4. S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), no. 3, 763–783. https://doi.org/10.1137/S0036139993253201
  5. W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl. 335 (2007), no. 1, 498–523. https://doi.org/10.1016/j.jmaa.2007.01.089
  6. K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations 197 (2004), no. 2, 315–348. https://doi.org/10.1016/j.jde.2003.08.003
  7. C. S. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. https://doi.org/10.1016/0022-0396(88)90147-7
  8. Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79–131. https://doi.org/10.1006/jdeq.1996.0157
  9. L. Niremberg, Topics in Nonlinear Function Analysis, American Mathematical Society, Providence, RI, 2001.
  10. P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations 200 (2004), no. 2, 245–273. https://doi.org/10.1016/j.jde.2004.01.004
  11. R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl. 309 (2005), no. 1, 151–166. https://doi.org/10.1016/j.jmaa.2004.12.026
  12. K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst. 9 (2003), no. 4, 1049–1061. https://doi.org/10.3934/dcds.2003.9.1049
  13. M. X. Wang, Non-constant positive steady states of the Sel’kov model, J. Differential Equations 190 (2003), no. 2, 600–620. https://doi.org/10.1016/S0022-0396(02)00100-6
  14. M. X. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratiodependent functional responses and diffusion, Phys. D 196 (2004), no. 1-2, 172–192. https://doi.org/10.1016/j.physd.2004.05.007

Cited by

  1. Cross-diffusion induced instability and pattern formation for a Holling type-II predator–prey model vol.247, 2014, https://doi.org/10.1016/j.amc.2014.08.088
  2. Effect of Time Delay on Spatial Patterns in a Airal Infection Model with Diffusion vol.21, pp.2, 2016, https://doi.org/10.3846/13926292.2016.1137503
  3. Cross-diffusion induced stationary patterns in a prey–predator system with parental care for predators vol.237, 2014, https://doi.org/10.1016/j.amc.2014.03.060