DOI QR코드

DOI QR Code

Effects of Dietary Arachidonic Acid (20:4n-6) Levels on Growth Performance and Fatty Acid Composition of Juvenile Eel, Anguilla japonica

  • Bae, Jun-Young (Department of Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Kim, Dae-Jung (Inland Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Yoo, Kwang-Yeol (Chungnam Fisheries Institute) ;
  • Kim, Sun-Gyu (Department of Aquaculture and Aquatic Sciences, Kunsan National University) ;
  • Lee, Jeong-Yeol (Department of Aquaculture and Aquatic Sciences, Kunsan National University) ;
  • Bai, Sungchul C. (Department of Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • 투고 : 2009.09.21
  • 심사 : 2009.11.24
  • 발행 : 2010.04.01

초록

This study was conducted to evaluate the effects of dietary arachidonic acid (AA, 20:4n-6) levels on growth performance and body composition in juvenile eel, Anguilla japonica. Six semi-purified experimental diets were formulated to be isonitrogenous and iso-caloric containing 55.0% crude protein and 15% crude lipid (18.3 kJ of available energy $g^{-1}$). Six different levels of AA were added to the basal diet, with 0, 0.2, 0.4, 0.6, 0.8 or 1.2% on a dry matter (DM) basis, respectively ($AA_{0.07},\;AA_{0.22},\;AA_{0.43},\;AA_{0.57},\;AA_{0.78}\;or\;AA_{1.23}$). After a conditioning period, fish initially averaging 27${\pm}$0.5 g (mean${\pm}$SD) were randomly distributed into each aquarium as triplicate groups of 20 fish each. One of six experimental diets was fed on a DM basis to fish in three randomly selected aquaria at a rate of 2-3% of total body weight twice a day. At the end of the 12-week feeding trial, weight gain (WG) and feed efficiency (FE) of fish fed $AA_{0.78}$ and $AA_{1.23}$ diets were significantly higher than of fish fed $AA_{0.07},\;AA_{0.22},\;AA_{0.43}$ diets (p<0.05). Specific growth rate (SGR) of fish fed the $AA_{0.78}$ diet was significantly higher than of fish fed $AA_{0.07},\;AA_{0.22},\;AA_{0.43}$ diets (p<0.05). However, there were no significant differences in WG, SGR and FE among fish fed $AA_{0.57},\;AA_{0.78}\;or\;AA_{1.23}$ diets (p>0.05). Whole body AA deposition of fish fed the $AA_{1.23}$ diet was significantly higher than for the other diets (p<0.05). Broken-line model analysis on the basis of WG and SGR indicated that the dietary AA requirement could be greater than 0.69% but less than 0.71% of the diet in juvenile eel. The growth-promoting activity of AA observed in the present study provides strong support for the contention that dietary AA is essential for juvenile eel.

키워드

참고문헌

  1. AOAC. 1995. Official methods of analysis. 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA
  2. Bae, J. Y. 2003. Studies on requirements of optimum dietary essential fatty acids in eel, Anguilla japonica. Ms. Thesis, Department of Fisheries Biology, Pukyong National University, Busan, Korea
  3. Bae, J. Y., K. M. Han, G. J. Park and S. C. Bai. 2004. Studies of requirements of optimum dietary essential fatty acids in juvenile eel, Anguilla japonica. J. Aquacult. 17(4):275-281
  4. Bae, J. Y., K. M. Han, J. H. Lee, S. E. Kim, J. Y. Lee and S. C. Bai. 2008. Effects of dietary quartz porphyry and feed stimulants, BAISM supplementation on growth performance and disease resistance of juvenile eel, Anguilla japonica. J. Aquacult. 21(1):26-33
  5. Bell, J. G., J. D. Castell, D. R. Tocher, F. M. MacDonald and J. R. Sargent. 1995. Effects of different dietary arachidonic acid:docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot, Scophthalmus maximus. Fish Physiol. Biochem. 14:139-151 https://doi.org/10.1007/BF00002457
  6. Bell, J. G. and J. R. Sargent. 2003. Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491-499 https://doi.org/10.1016/S0044-8486(02)00370-8
  7. Bell, J. G., D. R. Tocher and J. R. Sargent. 1994. Effects of supplementation with 20:3n-6, 20:4n-6 and 20:5n-3 on the production of the prostaglandins E and F of the 1-, 2- and 3-series in turbot, Scophthalmus maximus brain astroglial cells in primary culture. Biochim. Biophys. Acta 1211: 335-342 https://doi.org/10.1016/0005-2760(94)90158-9
  8. Bell, J. G., D. R. Tocher, B. M. Farndale, D. I. Cox, R. W. McKinney and J. R. Sargent. 1997. The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon, Salmo salar undergoing parr - smolt transformation. Lipids 32: 515-525 https://doi.org/10.1007/s11745-997-0066-4
  9. Bell, M. V. and J. R. Dick. 1990. Molecular species composition of phosphatidylinositol from brain, retina, liver and muscle of cod, Gadus morhua. Lipids 25:691-694 https://doi.org/10.1007/BF02544035
  10. Bell, M. V., C. M. F. Simpson and J. R. Sargent. 1983. n-3 and n-6 polyunsaturated fatty acids in the phosphoglycerides of saltsecreting epithelia from two marine fish species. Lipids 18: 720-725 https://doi.org/10.1007/BF02534539
  11. Bell, M. V., R. J., Henderson and J. R. Sargent. 1986. The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 4:711-719
  12. Bessonart, M., M. S. Izquierdo, M. Salhi, C. M. Hernandez-Cruz, M. M. Gonzalez, H. Fernandez-Palacios. 1999. Effect of dietary arachidonic acid levels on growth and fatty acid composition of gilthead sea bream, Sparus aurata larvae. Aquaculture 179:265-275 https://doi.org/10.1016/S0044-8486(99)00164-7
  13. Castell, J. D., R. O. Sinnhuber, J. H. Wales and D. J. Lee. 1972a. Essential fatty acids in the diet of rainbow trout, Salmo gairdneri, growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102:77-86
  14. Castell, J. D., R. O. Sinnhuber, D. J. Lee and J. H. Wales. 1972b. Essential fatty acids in the diet of rainbow trout, Salmo gairdneri, physiological symptoms of EFA deficiency. J. Nutr. 102:87-92 https://doi.org/10.1017/S0007114509993163
  15. Castell, J. D., J. G. Bell, D. R. Tocher and J. R. Sargent. 1994. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot, Scophthalmus maximus. Aquaculture 128:315-333 https://doi.org/10.1016/0044-8486(94)90320-4
  16. FAO. 2008. Food and Agriculture Organization. Fishery information, data and statistics website. Aquaculture production, 1984-2007
  17. Folch, J., M. Lees and G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509
  18. Furuita, H., T. Takeuchi and K. Uematsu. 1998. Effect of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder, Paralichthys olivaceus. Aquaculture 161:269-279 https://doi.org/10.1016/S0044-8486(97)00275-5
  19. Furuita, H., H. Tanaka, T. Yamamoto, N. Suzuki and T. Takeuchi. 2002. Effect of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of the Japanese flounder Paralichthys olivaceus. Aquaculture 210:323-333 https://doi.org/10.1016/S0044-8486(01)00855-9
  20. Furuita, H., T. Yamamoto, T. Shima, N. Suzuki and T. Takeuchi. 2003. Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder, Paralichthys olivaceus. Aquaculture 220:725-735 https://doi.org/10.1016/S0044-8486(02)00617-8
  21. Henderson, R. J. and J. R. Sargent. 1985. Fatty acid metabolism in fish. In: Nutrition and Feeding in Fish (Ed. C. B. Cowey, A. M. Mackie and J. G. Bell). Academic Press, London. pp. 349-364
  22. Henderson, R. J. and D. E. Tocher. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26:281-347 https://doi.org/10.1016/0163-7827(87)90002-6
  23. Henderson, R. J., M. V. Bell and J. R. Sargent. 1985. The conversion of polyunsaturated fatty acids to prosta-glandins by tissue homogenates of the turbot, Scophthalmus maximus. J. Exp. Mar. Biol. Ecol. 85:93-99 https://doi.org/10.1016/0022-0981(85)90016-4
  24. Ishizaki, Y., T. Takeuchi, T. Watanabe, M. Arimoto and K. Shimizu. 1998. A preliminary experiment of the effect of Artemia enriched with arachidonic acid on survival and growth of yellowtail. Fish. Sci. 64:295-299
  25. Kosutarak, P., A. Kanazawa, S. Teshima and S. Koshio. 1995. Interactions of L-ascorbyl-2-phosphate-Mg and n-3 highly unsaturated fatty acids on Japanese flounder juveniles. Fish. Sci. 61: 860-866
  26. Koven, W., Y. Barr, S. Lutzky, I. Ben-Atia, R. Weiss, M. Harel, P. Behrens and A. Tandler, 2001. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead seabream, Sparus aurata larvae. Aquaculture 193:107-122 https://doi.org/10.1016/S0044-8486(00)00479-8
  27. Lee, S. M., J. H. Lee and K. D. Kim. 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder, Platichthys stellatus. Aquaculture 225:269-281 https://doi.org/10.1016/S0044-8486(03)00295-3
  28. Mustafa, T. and K. C. Srivastava. 1989. Prostaglandins (eicosanoids) and their role in ectothermic organisms. Adv. Comp. Environ. Physiol. 5:157-207
  29. Robbins, K. R., H. W. Norton and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714
  30. Sargent, J. R., R. J. Henderson and D. R. Tocher. 1989. The lipids. In: Fish Nutrition, 2nd Ed. (Ed. J. E. Halver), Academic Press, New York, pp. 153-218
  31. Sargent, J. R., J. G. Bell, M. V. Bell, R. J. Henderson and D. R. Tocher. 1995. Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11:183-198 https://doi.org/10.1111/j.1439-0426.1995.tb00018.x
  32. Sargent, J. R., J. G. Bell, L. A. McEvoy, D. Tocher and A. Estevez. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191-199 https://doi.org/10.1016/S0044-8486(99)00083-6
  33. Stickney, R. R. and J. W. Andrews. 1972. Effects of dietary lipids on growth, food conversion, lipid and fatty acid composition of channel catfish. J. Nutr. 102:249-258 https://doi.org/10.1017/S0007114508190274
  34. Takeuchi, T., S. Arai, T. Watanabe and Y. Shimma. 1980. Requirement of eel, Anguilla japonica for essential fatty acids. Nippon Suisan Gakkaishi 46:345-353 https://doi.org/10.2331/suisan.46.345
  35. Teshima, S. 1985. Lipids. In: Fish Nutrition and Diets (Ed. Y. Yone). Koseisha Koseikaku, Tokyo. pp. 20-30
  36. Tocher, D. R., J. G. Bell, J. R. Dick, R. J. Henderson, F. McGhee, D. Mitchell and P. C. Morris. 2000. Polyunsaturated fatty acid metabolism in Atlantic salmon, Salmo salar undergoing parrsmolt transformation and the effects of dietary linseed and rapeseed oils. Fish Phys. Biochem. 23:59-73 https://doi.org/10.1023/A:1007807201093
  37. Wang, X., K. W. Kim and S. C. Bai. 2003. Comparison of Lascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish, Sebastes schlegeli. Aquaculture 225:387-395 https://doi.org/10.1016/S0044-8486(03)00303-X
  38. Watanabe, T., C. Ogino, Y. Koshiishi and T. Matsunaga. 1974. Requirement of rainbow trout for essential fatty acids. Bull. Jpn. Soc. Sci. Fish 40:493-499 https://doi.org/10.2331/suisan.40.493
  39. Zheng, F., T. Takeuchi, K. Yoseda, M. Kobayashi, J. Hirokawa and T. Watanabe. 1996. Requirement of larval cod for arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid using by their enriched Artemia nauplii. Nippon Suisan Gakkaishi 62:669-676 https://doi.org/10.2331/suisan.62.669

피인용 문헌

  1. vol.29, pp.1, 2012, https://doi.org/10.1111/jai.12001
  2. , can be estimated by plasma free valine and ammonia concentrations after dorsal aorta cannulation vol.40, pp.1, 2012, https://doi.org/10.1080/09712119.2011.628395
  3. Dietary effects on fatty acid composition in muscle tissue of juvenile European eel, Anguilla anguilla (L.) vol.66, pp.1, 2012, https://doi.org/10.1007/s10152-011-0246-3
  4. Role of cyclooxygenase-mediated metabolites in lipid metabolism and expression of some immune-related genes in juvenile grass carp (Ctenopharyngodon idellus) fed arachidonic acid vol.43, pp.3, 2017, https://doi.org/10.1007/s10695-016-0326-z
  5. ; Pallas, 1770): A Model for the Anabantidae Family pp.08938849, 2017, https://doi.org/10.1111/jwas.12494
  6. Novel Feed from Invasive Species is Beneficial to Walleye Aquaculture pp.15222055, 2018, https://doi.org/10.1002/naaq.10063
  7. A Review on Japanese Eel (Anguilla japonica) Aquaculture, With Special Emphasis on Nutrition vol.27, pp.2, 2010, https://doi.org/10.1080/23308249.2019.1583165
  8. Oligomeric Proanthocyanidins Counteracts the Negative Effects of High Level of Dietary Histamine on American Eel (Anguilla rostrata) vol.7, pp.None, 2010, https://doi.org/10.3389/fmars.2020.549145
  9. Effects of dietary arachidonic acid in European sea bass (Dicentrarchus labrax) distal intestine lipid classes and gut health vol.46, pp.2, 2010, https://doi.org/10.1007/s10695-019-00744-0
  10. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives vol.28, pp.4, 2010, https://doi.org/10.1139/er-2020-0031
  11. Feeding habitat and silvering stage affect lipid content and fatty acid composition of European eel Anguilla anguilla tissues vol.99, pp.3, 2010, https://doi.org/10.1111/jfb.14815
  12. Trophic ecology of the European eel (Anguilla anguilla) across different salinity habitats inferred from fatty acid and stable isotope analysis vol.78, pp.11, 2010, https://doi.org/10.1139/cjfas-2020-0432