Dynamic Instability of Delaminated Composite Structures with Various Geometrical Shapes

다양한 기하학적 형상을 갖는 층간 분리된 복합신소재 적층구조의 동적 불안정성

  • 이상열 (중부대학교 토목공학과) ;
  • 장석윤 (서울시립대학교 토목공학과)
  • Received : 2010.01.31
  • Accepted : 2010.03.02
  • Published : 2010.03.31

Abstract

The dynamic instability analysis of delaminated composite structures subjected to in-plane pulsating forces is carried out based on the higher order shell theory of Sanders. In the finite element (FE) formulation, the seven degrees of freedom per each node are used with transformations in order to fit the displacement continuity conditions at the delamination region. The boundaries of the instability regions are determined using the method proposed by Bolotin. The numerical results obtained for skew plates and shells are in good agreement with those reported by other investigators. The new results for delaminated skew plate and shell structures in this study mainly show the effect of the interactions between the radius-length ratio and other various parameters, for example, skew angles, delamination size, the fiber angle of layer and location of delamination in the layer direction. The effect of the magnitude of the periodic in-plane load on the instability regions is also investigated.

Keywords

References

  1. Balamurugan, M., Ganapathi, M., and Varadan, T. K. (1996). "Nonlinear dynamic instability of laminated composite plates using finite element method." Comput. Struct., Vol. 60, No. 1, pp. 125-130. https://doi.org/10.1016/0045-7949(95)00368-1
  2. Bert, C. W. and Birman, V. (1987). "Dynamic instability of shear deformable antisymmetric angle-ply plates." Int. J. Solids Struct., Vol. 23, No. 7, pp. 1053-1061. https://doi.org/10.1016/0020-7683(87)90096-5
  3. Bhimaraddi, A. and Stevens, L. K. (1984). "A high order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates." J. .Appl. Mech., Vol. 51, pp. 195-198. https://doi.org/10.1115/1.3167569
  4. Bolotin, V. V. (1964). The dynamic stability of elastic systems, San Francisco, CA: Holden-Day.
  5. Kant, T., Varaiya, J. H., and Arora, C. P. (1990). "Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes." Comp. Struct., Vol. 36, No. 3, pp. 401-420. https://doi.org/10.1016/0045-7949(90)90279-B
  6. Lam, K. Y. and Ng, T. Y. (1997). "Dynamic stability of cylindrical shells subjected to conservative periodic axial loads using different shell theories." J. Sound Vib., Vol. 207, pp. 497-520. https://doi.org/10.1006/jsvi.1997.1186
  7. Lee, S. J. and Reddy, J. N. (2004). "Vibration suppression of laminated shell structures investigated using higher order shear deformation theory." Smart Mat. Struc., Vol. 13, pp. 1176-1194. https://doi.org/10.1088/0964-1726/13/5/022
  8. Lee, S. Y. and Wooh, S. C. (2004). "Finite element vibration analysis of composite box structures using the high order plate theory." J. Sound Vib., Vol. 277, pp. 801-814. https://doi.org/10.1016/j.jsv.2003.09.024
  9. Lee, S. Y. and Yhim, S. S. (2004). "Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory." Int. J. Solids Struct., Vol. 41, pp. 4457-4472. https://doi.org/10.1016/j.ijsolstr.2004.03.021
  10. Moorthy, J., Reddy J. N., and Plaut, R. H. (1990). "Parametric instability of laminated composite plates with transverse shear deformation." Int. J. Solids Struct., Vol. 26, pp. 801-811. https://doi.org/10.1016/0020-7683(90)90008-J
  11. Ng, T. Y., Lam, K. Y., and Reddy, J. N. (1998). "Dynamic stability of cross-ply laminated composite cylindrical shells." Int. J. Mech. Sci., Vol. 40, No. 8, pp. 805-823. https://doi.org/10.1016/S0020-7403(97)00143-4
  12. Ng, T. Y., Lam, K. Y., and Reddy, J. N. (1999). "Dynamic stability of cylindrical panels with transverse shear effects." Int. J. Solids Struct., Vol. 36, pp. 3483-3496. https://doi.org/10.1016/S0020-7683(98)00161-9
  13. Park, T., and Lee, S. Y., and Voyiadjis, G. Z. (2009). "Finite element vibration analysis of composite skew laminates containing delaminations around quadrilateral cutouts." Comp. Part B: Eng., Vol. 40, pp. 225-236.
  14. Patha, D., and Shigha, M. K. (2006). "Dynamic stability analysis of composite skew plates subjected to periodic in-plane load." Thin-walled Struct., Vol. 44, pp. 937-942. https://doi.org/10.1016/j.tws.2006.08.023
  15. Radu, A. G., and Chattopadhyay, A. (2002). "Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach." Int. J. Solids Struct., Vol. 39, pp. 1949-1965. https://doi.org/10.1016/S0020-7683(01)00168-8
  16. Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: theory and analysis, CRC press, New York, pp. 25-35.
  17. Sahu, S. K. and Datta, P. K. (2002). "Dynamic stability of curved panels with cutouts." Journal of Sound and Vibration, Vol. 251, No. 4, pp. 683-696. https://doi.org/10.1006/jsvi.2001.3961
  18. Sanders, J. L. Jr. (1963). "Nonlinear theories for thin shells Q." Appl. Math., Vol. 21, pp. 21-36.
  19. Srinivasan, R. S. and Chelepandi, P. (1986). "Dynamic stability of rectangular laminated composite plates." Comput. Struct., Vol. 24, No. 2, pp. 233-238. https://doi.org/10.1016/0045-7949(86)90282-8