References
- Balamurugan, M., Ganapathi, M., and Varadan, T. K. (1996). "Nonlinear dynamic instability of laminated composite plates using finite element method." Comput. Struct., Vol. 60, No. 1, pp. 125-130. https://doi.org/10.1016/0045-7949(95)00368-1
- Bert, C. W. and Birman, V. (1987). "Dynamic instability of shear deformable antisymmetric angle-ply plates." Int. J. Solids Struct., Vol. 23, No. 7, pp. 1053-1061. https://doi.org/10.1016/0020-7683(87)90096-5
- Bhimaraddi, A. and Stevens, L. K. (1984). "A high order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates." J. .Appl. Mech., Vol. 51, pp. 195-198. https://doi.org/10.1115/1.3167569
- Bolotin, V. V. (1964). The dynamic stability of elastic systems, San Francisco, CA: Holden-Day.
- Kant, T., Varaiya, J. H., and Arora, C. P. (1990). "Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes." Comp. Struct., Vol. 36, No. 3, pp. 401-420. https://doi.org/10.1016/0045-7949(90)90279-B
- Lam, K. Y. and Ng, T. Y. (1997). "Dynamic stability of cylindrical shells subjected to conservative periodic axial loads using different shell theories." J. Sound Vib., Vol. 207, pp. 497-520. https://doi.org/10.1006/jsvi.1997.1186
- Lee, S. J. and Reddy, J. N. (2004). "Vibration suppression of laminated shell structures investigated using higher order shear deformation theory." Smart Mat. Struc., Vol. 13, pp. 1176-1194. https://doi.org/10.1088/0964-1726/13/5/022
- Lee, S. Y. and Wooh, S. C. (2004). "Finite element vibration analysis of composite box structures using the high order plate theory." J. Sound Vib., Vol. 277, pp. 801-814. https://doi.org/10.1016/j.jsv.2003.09.024
- Lee, S. Y. and Yhim, S. S. (2004). "Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory." Int. J. Solids Struct., Vol. 41, pp. 4457-4472. https://doi.org/10.1016/j.ijsolstr.2004.03.021
- Moorthy, J., Reddy J. N., and Plaut, R. H. (1990). "Parametric instability of laminated composite plates with transverse shear deformation." Int. J. Solids Struct., Vol. 26, pp. 801-811. https://doi.org/10.1016/0020-7683(90)90008-J
- Ng, T. Y., Lam, K. Y., and Reddy, J. N. (1998). "Dynamic stability of cross-ply laminated composite cylindrical shells." Int. J. Mech. Sci., Vol. 40, No. 8, pp. 805-823. https://doi.org/10.1016/S0020-7403(97)00143-4
- Ng, T. Y., Lam, K. Y., and Reddy, J. N. (1999). "Dynamic stability of cylindrical panels with transverse shear effects." Int. J. Solids Struct., Vol. 36, pp. 3483-3496. https://doi.org/10.1016/S0020-7683(98)00161-9
- Park, T., and Lee, S. Y., and Voyiadjis, G. Z. (2009). "Finite element vibration analysis of composite skew laminates containing delaminations around quadrilateral cutouts." Comp. Part B: Eng., Vol. 40, pp. 225-236.
- Patha, D., and Shigha, M. K. (2006). "Dynamic stability analysis of composite skew plates subjected to periodic in-plane load." Thin-walled Struct., Vol. 44, pp. 937-942. https://doi.org/10.1016/j.tws.2006.08.023
- Radu, A. G., and Chattopadhyay, A. (2002). "Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach." Int. J. Solids Struct., Vol. 39, pp. 1949-1965. https://doi.org/10.1016/S0020-7683(01)00168-8
- Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: theory and analysis, CRC press, New York, pp. 25-35.
- Sahu, S. K. and Datta, P. K. (2002). "Dynamic stability of curved panels with cutouts." Journal of Sound and Vibration, Vol. 251, No. 4, pp. 683-696. https://doi.org/10.1006/jsvi.2001.3961
- Sanders, J. L. Jr. (1963). "Nonlinear theories for thin shells Q." Appl. Math., Vol. 21, pp. 21-36.
- Srinivasan, R. S. and Chelepandi, P. (1986). "Dynamic stability of rectangular laminated composite plates." Comput. Struct., Vol. 24, No. 2, pp. 233-238. https://doi.org/10.1016/0045-7949(86)90282-8