Anti Inflammatory Activity of Viburnum dilatatum Thunb. Extract as Cosmetic Ingredient

화장품 소재로서 가막살나무 추출물의 항염증 효능

  • 권유빈 (코스맥스(주) 중앙연구소) ;
  • 유병삼 (코스맥스(주) 중앙연구소) ;
  • 김대신 (제주 한라수목원 제주특별자치도 환경자원연구원) ;
  • 문성준 (코스맥스(주) 중앙연구소) ;
  • 윤명석 (코스맥스(주) 중앙연구소) ;
  • 박수남 (서울과학기술대학교 그린코스메틱연구개발센터)
  • Received : 2010.09.06
  • Accepted : 2010.09.20
  • Published : 2010.09.30

Abstract

The crude ethanol extracts and their solvent-partitioned fractions derived from the leaf and twig of Viburnum dilatatum Thunb. were investigated for their 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging efficacy. The results showed that the butanol-soluble fraction ($SC_{50}\;=\;110.30\;{\mu}g/mL$) exhibited higher anti-oxidant activity than the crude ethanol extract ($SC_{50}\;=\;117.03\;{\mu}g/mL$) in the DPPH assay model. Then, the effects of the same extract samples on the production of nitric oxide were examined in LPS-stimulated RAW264.7 cells. Although the hexane and methylene chloride-soluble fraction showed a weak anti-oxidant activity, they exhibited potent inhibitory activity of NO production above 50 % at a concentration of $10\;{\mu}g/mL$. The hexane-soluble fraction also showed the inhibitory effect on mRNA expression of pro-inflammatory mediators such an TNF-$\alpha$, IL-$1{\beta}$, IL-6, iNOS and COX-2 in LPS-stimulated RAW264.7. These results suggest that the solvent extracts of Viburnum dilatatum Thunb. could be used as an anti-irritation ingredient.

본 연구에서는 가막살나무(Viburnum dilatatum Thunb.)의 잎과 세지로부터 유래되는 천연화학성분들을 얻고, 이들의 자극완화용 화장품 소재로써의 가능성을 확인하기 위하여 항산화 효능 및 항염증 효능을 조사하였다. DPPH(1,1-diphenyl-2-picrylhydrazyl)를 이용한 전자공여능 측정방법에 의한 항산화 효능 조사 결과, 가막살나무의 에탄올(Ethanol) 추출물($SC_{50}\;=\;17.03\;{\mu}g/mL$), 에틸아세테이트(ethyl acetate) 분획물($SC_{50}\;=\;13.97\;{\mu}g/mL$), 부탄올(butanol) 분획물($SC_{50}\;=\;10.30\;{\mu}g/mL$) 순으로 항산화능력이 증가함을 알 수 있었다. 그러나 lipopolysaccharide (LPS)에 의해 활성화된 마우스 대식세포(RAW264.7 cells)에서 생성되는 산화질소(nitric oxide : NO) 생성의 억제능을 조사한 결과에서는 항산화 활성이 저조했던 헥산(hexane) 및 메틸렌클로라이드(methylene chloride) 분획물에서 $10\;{\mu}g/mL$ 시료농도를 기준으로 할 때, 50 % 이상의 NO 생성 억제율로 우수한 항염증 효능을 나타내었다. 특히, 위와 동일 실험 조건에서 헥산 분획물의 경우, 염증 반응 인자인 TNF-$\alpha$, IL-$1{\beta}$, IL-6 등의 cytokine과 iNOS, COX-2 효소의 발현이 농도의존적으로 억제됨을 RT-PCR 방법으로 확인할 수 있었다. 이번 연구 결과들로부터 가막살나무 유래 천연화학성분들은 자극완화용 화장품 소재 개발에 매우 유리하게 응용될 수 있음을 확인할 수 있었다.

Keywords

References

  1. W. Lesslauer, H. Tabuchi, R. Gentz, M. Brockhaus, E. J. Schlaeger, and G. Grau. Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality, Eur. J. Immunol., 21, 2883 (1991). https://doi.org/10.1002/eji.1830211134
  2. K. M. Mohler, D. S. Torrance, C. A. Smith, R. G. Goodwin, K. E. Stremler, and V. P. Fung, Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists, J. Immunol., 151, 1548 (1993).
  3. E. A. Hyun, H. J. Lee, W. J. Yoon, S. Y. Park, H. K. Kang, S. J. Kim, and E. S. Yoo, Inhibitory effect of Salvia officinalis on the inflammatory cytokines and inducible nitric oxide synthesis in murine macrophage RAW264.7, Yakhak Hoeji, 48, 159 (2004).
  4. A. Weisz, L. Cicatiello, and H. Esumi, Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine, J. Biochem., 316, 209 (1996). https://doi.org/10.1042/bj3160209
  5. T. C. Moon, K. C. Chung, K. H. Son, H. P. Kim, S. S. Kang, and H. W. Chang, Screening of cyclooxygenase- 2 inhibitors from natural products, YAKHAK HOEJI, 42, 214 (1998).
  6. J. L. Masferrer, B. S. Zweifel, P. T. Manning, S. D. Hauser, K. M. Leahy, and W. G. Smith, Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic, Proc. Natl. Acad. Sci. USA, 91, 3228 (1994). https://doi.org/10.1073/pnas.91.8.3228
  7. K. Seibert, Y. Zhang, K. Leahy, S. Hauser, J. Masferrer, and W. Perkins, Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain, Proc. Natl. Acad. Sci. USA, 91, 12013 (1994). https://doi.org/10.1073/pnas.91.25.12013
  8. T. Lawrence, D. A. Wiilloughby, and D. W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation, Nat. Rev. Immunol., 2, 787 (2002). https://doi.org/10.1038/nri915
  9. M. Higuchi, N. Hisgahi, H. Taki, and T. Osawa, Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages, J. Immunol., 144, 1425 (1990).
  10. N. Laflamme and S. Rivest, Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components, FASEB J., 15, 155 (2001). https://doi.org/10.1096/fj.00-0339com
  11. V. Willeaume, V. Kruys, T. Mijatovic, and G. Huez, Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharide in macrophages: similarities and differences, J. Inflamm., 46, 1 (1996).
  12. L. C. Parish, J. L. Parish, H. B. Routh, and J. A. Witkowski, The treatment of acne vulgaris with low dosage doxycycline, Acta Dermatovenerol. Croat., 13(3), 156 (2005).
  13. I. Kunihisa, O. Akio, and M. Hajime, Antioxidant activity and inhibitory effect of Gamazumi (Viburnum dilatatum Thunb.) on oxidative damage induced by water immersion restraint stress in rats, International Journal of Food Sciences and Nutrition, 52, 443 (2001). https://doi.org/10.1080/09637480120078339
  14. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 29, 1199 (1958).
  15. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, Journal of Immunological Methods, 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  16. J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages, Phytother Res, May, 17(5), 485 (2003). https://doi.org/10.1002/ptr.1180
  17. H.-Y. Thong and H. I. Maibach, Irritant dermatitis as a model of inflammation, Drug Discovery Today: Disease Mechanisms, 5(2), 221 (2008). https://doi.org/10.1016/j.ddmec.2008.02.002