DOI QR코드

DOI QR Code

Biochemical Characteristics of a Bacteria (Bacillus pseudomycoides) Alanine Racemase Expressed in Escherichia coli

Bacillus pseudomycoides로 부터 분리된 alanine racemase 유전자의 발현 및 생화학 특성

  • Kang, Han-Chul (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Na-Hyun (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jeong, Yu-Jeong (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Sang-Hong (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Chang-Muk (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration)
  • 강한철 (농촌진흥청, 국립농업과학원, 기능성물질개발과) ;
  • 김나현 (농촌진흥청, 국립농업과학원, 기능성물질개발과) ;
  • 정유정 (농촌진흥청, 국립농업과학원, 기능성물질개발과) ;
  • 윤상홍 (농촌진흥청, 국립농업과학원, 기능성물질개발과) ;
  • 이창묵 (농촌진흥청, 국립농업과학원, 기능성물질개발과)
  • Received : 2010.07.12
  • Accepted : 2010.09.01
  • Published : 2010.09.30

Abstract

A gene encoding a putative alanine racemase in B. pseudomycoides was cloned and expressed in Escherichia coli BL21(DE3) using a pET-21 vector harbouring 6xHistidine tag. Affinity purification of the recombinant alanine racemase with a nickel resin resulted in one band by SDS-PAGE analysis. The purified enzyme showed a molecular weight of 46 kDa. The enzyme was the most active toward L-alanine and secondly D-alanine, implying that the enzyme is an alanine racemase. D-cysteine significantly inhibited the enzyme activity and also L-cysteine to a lesser extent. The enzyme was considerably activated by addition of pyridoxal-5'-phosphate (PLP), showing that 73% increase in activity was observed at 0.3 mM, compared to control. The enzyme was the most active at pH 9.0 and more stable at alkaline pHs than acidic pHs.

B. pseudomycoides로 부터 alanine racemase로 추정되는 유전자를 분리한 다음 6xHistidine 이 결합된 pET-21 운반체를 이용하여 E. coli BL21(DE3)에서 발현시키고 생화학 특성을 조사하였다. 재조합된 alanine racemase는 affinity chromatography를 이용하여 분리하였으며 SDS-PAGE 분석에서 약 46 kDa의 단일밴드를 나타내었다. 분리된 효소는 여러 아미노산 중에서 L-alanine에 대하여 가장 높은 활성도를 보이고 D-alanine에 대하여 두번째로 높은 활성도를 보였다. 따라서 분리된 효소는 alanine racemase로 판단되었다. 분리된 효소는 D-cysteine에 하여 상당히 저해가 되었다. 효소의 최적 활성도는 pH 9.0 근처에서 관찰되었고 산성의 조건보다는 알칼리의 조건에서 보다 안정하였다. 보효소인 PLP 0.3mM의 첨가에 의해 효소의 활성도는 약 70% 가량 증대되었다.

Keywords

References

  1. Bjelakovic G, Stojanovic I, Bjelakovic GB, Pavlovic D, Kocic G, and Millic AD (2002) Competitive inhibitors of enzymes and their therapeutic application. Facta universitatis Series: Med Biol 9, 201-206.
  2. Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Francois JA and Kappock TJ (2007) Alanine racemase from the acidophile Acetobacter aceti. Prot Exp Purif 51, 39-48. https://doi.org/10.1016/j.pep.2006.05.016
  4. Grohs P, Gutmann L, Legrand R, Schoot B, and Mainardi J (2000) Vancomycin resistance is associated with serine containing peptidoglycan in Enterococcus gallinarum. J Bacteriol 182, 6228-6232. https://doi.org/10.1128/JB.182.21.6228-6232.2000
  5. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, and Zocher R. (1994) Purification and characterization of eukaryotic alanine racemase acting as key enzyme in cyclosporine biosynthesis. J Biol Chem 269, 12710-12714.
  6. Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B, and Delcour J (1997) The alanine racemase gene is essential for growth of Lactobacillus plantarum. J Bacteriol 179, 3804-3807.
  7. Johnston M (1969) Studies on amino acid racemases. J Biol Chem 244, 5414-5420.
  8. Ju J, Yokoigawa K, Misono H, and Ohnishi K (2005) Cloning of alanine racemase genes from Pseudomonas fluorescens strains and oligomerization states of gene products expressed in Escherichia coli. J Biosci Bioeng 100, 409-417. https://doi.org/10.1263/jbb.100.409
  9. Ju J, Xu S, Wen J, Li G, Ohnishi K, Xue Y, and Ma Y (2009) Characterization of endogenous pyridoxal 5'-phosphate dependent alanine racemase from Bacillus pseudojirmus OF4 J. Biosci Bioeng 107(3), 225-229. https://doi.org/10.1016/j.jbiosc.2008.11.005
  10. Kanodia S, Agarwall S, Singh P, Singh P, and Bhatnagar R (2008) Biochemical characterization of alanine racemase; a spore protein produced by Bacillus anthracis. Biochem Mol Biol Rep 42, 47-52.
  11. Kuniki K, Masaru S, and Yoneyama M (2007) Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996. Appl Microboi. Biotechnol 73, 1299-1305.
  12. Lambert MP and Neuhaus FC (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110, 978-987.
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  14. Lobocka M, Hennig J, Wild J, and Klopotowski T (1994) Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol 176, 1500-1510.
  15. Nishimura K, Tomoda Y, Nakamoto Y, Ishii Y, and Nagata Y (2007) Alanine racemase from the green alga Chlamydomonas reinhardtii. Amono acids 32, 59-62. https://doi.org/10.1007/s00726-006-0352-8
  16. Noda M, Matoba Y, Kumagai T, and Sugiyama M (2004) Structural evidence that alanine racemase from a D-cycloserineproducing microorganism exhibits resistance to its own product. J Biol Chem 279, 46153-46161 https://doi.org/10.1074/jbc.M404605200
  17. Oikawa T, Tauch A, Schaffer S, and Fujioka T (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J Biotechnol 125, 503-512. https://doi.org/10.1016/j.jbiotec.2006.04.002
  18. Ono K, Yanagida K, Oikawa T, and Soda K (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochem 67(9), 856-860. https://doi.org/10.1016/j.phytochem.2006.02.017
  19. Preston RA and Douthit HA (1984) Germination of Bacillus cereus spores: Critical control by DL-alanine racemase. J Gen Microbiol 130, 3123-3133.
  20. Saito M, Nishimura K, Hasegawa Y, Shinohara T, Wakabayashi S, Kurihara T, Ishizuka M, and Nagata Y (2007) Alanine racemase from Helicobacter pylori NCTC 11 637. Life Sci 80, 788-794. https://doi.org/10.1016/j.lfs.2006.11.005
  21. Strych U, Huang HC, Krause KL, and Benedik MJ (2000) Characterization of the alanine racemase from Pseudomonas aeruginosa PAm. Curr Microbiol 41, 290-294. https://doi.org/10.1007/s002840010136
  22. Tauch A, Gotker S, Puhler A, Kalinowski, and Thierbach G (2002) The alanine racemase gene alr is an attractive to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol 99, 79-91. https://doi.org/10.1016/S0168-1656(02)00159-1
  23. Strych U, Penland RL, Jimenez M, Krause KL, and Benedik MJ (2001) Characterization of the alanine racemases from two mycobacteria. FEMS Microbiol Lett 196, 93-98. https://doi.org/10.1111/j.1574-6968.2001.tb10547.x
  24. Uo T, Yoshimura T, Tanaka N, Takegawa K, and Esaki N (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eukaryotic counterpart to bacterial alanine racemase. J Bacteriol 183, 2226-2233. https://doi.org/10.1128/JB.183.7.2226-2233.2001
  25. Uo T, Veda M, Nishiyama T, Yoshimura T, and Esaki N (2001) Purification and characterization of alanine racemase from hepatopancreas of black-tiger prawn, Penaeus monodon. J Mol Cat (B), 137-144.
  26. Wasserman SA, Walsh CT, and Botstein D (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153(3), 1439-1450.
  27. Watanabe A, Kurokawa Y, Yoshimura T, Kurihara T, Soda K, and Esaki N (1999) Role of lysine39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5'phosphate: chemical rescue studies of Lys39 Ala mutant. J Biol Chern 274, 4189-4194. https://doi.org/10.1074/jbc.274.7.4189
  28. Watanabe A, Yoshimura T, Mikami B, Hayashi H, Kagamiyama H, and Esaki N. (2002) Reaction mechanism of alanine racemase from Bacillus stearothermophilus. J Biol Chem 277, 19166-19172. https://doi.org/10.1074/jbc.M201615200
  29. Yamashita T, Ashiuchi M, Ohnishi K, Kato S, Nagata S, and Misono H (2003) Molecular characterization of alanine racemase from Bifidobacterium bifidum. J Mol Cat B 23, 213-222. https://doi.org/10.1016/S1381-1177(03)00083-3
  30. Zhang X, Jantama K, Moore JC, Shanmugam KT, and Ingram LO (2007) Production of L-alanine by metabolically engineered Escherichia coli. Appl Microbial Bioteclmol 77, 355-366. https://doi.org/10.1007/s00253-007-1170-y