고분자 분리막 재질 변화에 따른 $O_2$, $CF_4$, $SF_6$ 투과도 및 투과선택도 특성 변화에 대한 연구

Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes

  • Lee, Hyun-Jung (Environment Division, Korea Institute of Science and Technology) ;
  • Lee, Min-Woo (Environment Division, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Kyung (Department of Industrial Chemistry, Sangmyung University) ;
  • Lee, Sang-Hyup (Environment Division, Korea Institute of Science and Technology)
  • 투고 : 2010.08.25
  • 심사 : 2010.09.20
  • 발행 : 2010.09.30

초록

IPCC (Intergonvernmental Pane1 of Climate Change)에서 $CO_2$의 23,900배에 해당하는 지구온난화지수를 가진 $SF_6$ (Sulphur hexafluoride) 가스와 중전기 산업에서 아크 발생에 의해 생긴 $SF_6$의 주요 분해 부산물 중 하나이며 $CO_2$의 6,300배에 해당하는 지구온난화지수를 가진 $CF_4$ (Tetrafluoromethane) 가스의 배출에 대한 규제가 적극 검토되고 있다. 본 연구는 $O_2$, $CF_4$에 대한 $SF_6$의 분리 회수의 기초 연구로써, 상용화된 PSF (polysulfone), PC (tetra-bromo polycarbonate)와 PI (polyimide) 고분자 분리막을 사용하여 $O_2$, $CF_4$$SF_6$ 가스의 압력과 온도 변화에 따른 투과도 및 투과선택도 연구를 수행하였다. 압력 변화에 따른 $O_2$의 투과도는 PSF 중공사 분리막에서 압력 1.1 MPa일 때, 37.5 GPU로 가장 높게 나타났고, $SF_6$$CF_4$의 경우 압력 1.1 MPa에서 PC 중공사 분리막이 각각 2.7 GPU와 2.5 GPU로 가장 높은 투과플럭스를 나타냈다. 온도 변화에 따른 $O_2$의 투과플럭스는 막의 온도가 $45^{\circ}C$일 때 PSF 중공사 분리막이 41.2 GPU로 가장 높게 나타났고, $SF_6$$CF_4$는 막의 온도가 $25^{\circ}C$일 때, PC 중공사 분리막이 각각 2.4 GPU와 2.3 GPU로 가장 높은 투과플럭스를 나타냈다. 압력과 온도 변화에 따른 $O_2/SF_6$$CF_4/SF_6$의 투과선택도 결과, 높은 단일 기체 투과플럭스를 보인 PSF와 PC 중공사 분리막이 가장 낮은 투과선택도를 나타내고, 가장 낮은 투과플럭스를 보인 PI 중공사 분리막이 가장 높은 투과선택도를 나타냄을 확인할 수 있다.

In this study, we tried to observe the permeation on the single $O_2$, $CF_4$ and $SF_6$ gas using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. We also observed the permselectivity on the $O_2/SF_6$ and $CF_4/SF_6$. According to the results of single gases permeation for different pressures, PSF membrane has the highest $O_2$ permeation of 37.5 GPU and PC membrane has the highest $SF_6$ permeation of 2.7 GPU and the highest $CF_4$ permeation of 2.5 GPU at 1.1 MPa. According to the results of single gases permeation for different temperatures, PSF membrane has the highest permeation of $O_2$ at $45^{\circ}C$ and PC membrane has the highest permeation of $SF_6$ and $CF_4$ at $25^{\circ}C$. From the result of $O_2/SF_6$ and $CF_4/SF_6$ permselectivity for different pressures and temperature, the highest permeation and the lowest permselectivity were observed in the PSF and PC membrane. On the contrary, the lowest permeation and the highest permselectivity was observed in the PI membrane.

키워드

참고문헌

  1. W.-T. Tsai, "The decomposition products of sulfur hexafluoride (SF6): Reviews of environmental and health risk analysis", J. Fluor. Chem., 128(11), 1345 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008
  2. O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2/SF_6$ gas mixtures by using a polymer membrane", IEEE Electrical Insulation Magazine, 18(3), 32 (2002). https://doi.org/10.1109/MEI.2002.1014965
  3. S. P. Cashion, N. J. Ricketts, and P. C. Hayes, "Characterisation of protective surface films formed on molten magnesium protected by air/$SF_6$ atmospheres", J. Light Metals, 2(1), 37 (2002). https://doi.org/10.1016/S1471-5317(02)00011-1
  4. 최대기, 온실가스(HFC, PFC, SF6)저감대책에 관한 기획 연구, 최종보고서, 산업자원부, 101 (2000).
  5. N. Nakicenovic, J. Alcamo, and G. Davis, de Vries, "Special Report on Emissions Scenarios: 2000", Intergovernmental Panel on Climate Change- Complete online versions, http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/ (2001).
  6. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, "2006 IPCC Guidlines for National Greenhouse Gas Inventories", 3, http://www.ipccnggip. iges.or.jp/public/2006gl/vol3.html, April (2007).
  7. S. A. Montzka and P. J. Fraser, "Scientific Assessment of Ozone Depletion: 2002, Controlled Substances and Other Source Gases", World Meteorlogical Organization (WMO), 1.22-1.61 (2003).
  8. U.S. Climate Change Technology, "4.3.3 Semiconductors and Magnesium: Recovery and Recycle", U.S. Climate Change Technology Program - Technology Options for the Near and Long Term, 4.3-4.6 (2005).
  9. G. Dagan, G. Agam, V. Krakov, and L. Kaplan, "Carbon membrane separator for elimination of $SF_6$ emissions from gas-insulated electrical utilities", in Proc. of the EPA Conference on SF6 and Environment Emission Reduction Stategies, SanDiago, California, 1-5 (2000).
  10. M. Toyoda, H. Murase, T. Inohara, H. Naotsuka, A. Kobayashi, K. Takano, and K. Ohkuma, "Application of pressure swing adsorption to $SF_6$ separation and liquefaction from $SF_6/N_2$ mixtures", 2000 IEEE Power Engineering Society Winter Meeting, 2000WM-475, 2156 (2000).
  11. D.-H. Kim, Y.-M. An, H.-D. Jo, J.-S. Park, and H.-K. Lee, "Studies on the $N_2/SF_6$ permeation behaviors using the polyethersulfone hollow fiber membranes", Membrane Journal, 19(3), 244 (2009).
  12. H. M. Ettouney, H. T. El-Dessouky, and W. A. Waar, "Separation characteristics of air by polysulfone hollow fiber membranes in series", J. Membr. Sci., 148, 105 (1998). https://doi.org/10.1016/S0376-7388(98)00144-6
  13. D. R. Paul and Y. Yampol'skii, "Polymeric gas separation membranes", CRC Press, 209 (1994).
  14. International Standard, "Guidelines for the checking and treatment of sulfer hexafluoride ($SF_6$) taken from electrical equipment and specification for its re-use", International Electrotechnical Commission, IEC 60480 Second edition (2004).
  15. International Standard, "Specification of technical grade sulfer hexafluoride ($SF_6$) for use in electrical equipment", International Electrotechnical Commission, IEC 60376 Second edition (2005).
  16. H. J. Lee, M. W. Lee, H. K. Lee, and S. H. Lee, "Separation and recovery of $SF_6$ gas from $N_2/SF_6$ gas mixtures by using a polymer hollow fiber membranes", Korean Society of Environmental Engineers, submited.
  17. Y. Yampolskii, I. Pinnau, and B. Freeman, "Meterial science of membranes for gas and vapor separation", John Wiley & Sons, Ltd., 1 (2006).
  18. D. T. Clausi and W. J. Koros, "Formation of defect-free polyimide hollow fiber membranes for gas separations", J. Membr. Sci., 167, 79 (2000). https://doi.org/10.1016/S0376-7388(99)00276-8
  19. A. F. Ismail, B. C. Ng, and W. A. W. Abdul Rahman, "Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance", Sep. Purif. Technol., 33, 255 (2003). https://doi.org/10.1016/S1383-5866(03)00009-1
  20. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  21. J.-H. Kim, J. W. Rhim, and S.-B. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membrane Journal, 12(3), 121 (2002).
  22. S. H. Han, H. B. Park, and Y. M. Lee, "Recent technology trends of polymeric gas separation membranes", Polymer Science and Technology, 19(4), 284 (2008).