Dynamic Simulation of Membrane Reactor for WGS Reaction

Water Gas Shift (WGS) 공정에 대한 분리막 반응기의 동적 모사

  • Oh, Min (Department of Chemical Engineering, Hanbat National University) ;
  • Yi, Yong (Department of Chemical Engineering, Hanbat National University) ;
  • Hong, Seong-Uk (Department of Chemical Engineering, Hanbat National University)
  • 오민 (한밭대학교 화학공학과) ;
  • 이용 (한밭대학교 화학공학과) ;
  • 홍성욱 (한밭대학교 화학공학과)
  • Received : 2010.09.01
  • Accepted : 2010.09.15
  • Published : 2010.09.30

Abstract

In this study, dynamic simulation of membrane reactor was performed for water gas shift reaction and temperature, hydrogen concentration, etc. were investigated as a function of time and position. Simulation results indicated that differences of hydrogen concentration, hydrogen partial pressure, and temperature in the radial direction, were larger in the entrance than in the exit. In addition, the hydrogen flux was the largest in the entrance, where the hydrogen partial pressure difference was the largest, and the conversion of carbon monoxide in the exit was about 0.65.

본 연구에서는 Water Gas Shift (WGS) 반응이 일어나는 분리막 반응기 (MR) 대상공정에 대해서 동적모사 (dynamic simulation)를 실시하고 시간과 위치에 따른 온도 및 수소 농도 변화 등을 살펴보았다. 모사 결과에 의하면 도입부에서 반경방향으로의 수소 농도, 수소 분압 및 온도차가 가장 컸으며 출구에서 가장 작았다. 또한, 수소분압의 차이가 가장 큰 도입부에서 수소의 flux가 가장 크게 나타나며 출구에서 일산화탄소의 전환률은 0.65였다.

Keywords

References

  1. W. H. Chen and J. G. Jheng, "Characterization of water gas shift reaction in association with carbon sequestration", J. Power Sources, 172, 368 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.022
  2. J. H. Tong, L. L. Su, K. Haraya, and H. Suda, "Thin Pd membrane on alpha-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template", J. Membr. Sci., 310, 93 (2008). https://doi.org/10.1016/j.memsci.2007.10.053
  3. M. Ni, D. Y. C. Leung, and M. K. H. Leung, "A review on reforming bio-ethanol for hydrogen economy", Int. J. Hydrogen Energy, 30, 225 (2005). https://doi.org/10.1016/j.ijhydene.2004.03.033
  4. A. Naidja, C. R. Krishna, T. Butcher, and D. Mahajan, "Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems", Prog. Energy. Combust., 29, 155 (2003). https://doi.org/10.1016/S0360-1285(03)00018-2
  5. M. D. Falco, L. D. Paola, and L. Marrelli, "Heat transfer and hydrogen permeability in modeling industrial membrane reactors for methane steam reforming", Int. J. Hydrogen Energy, 32, 2902 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.014
  6. J. I. Ha and T. B. Kang, "Separation of $H_2\;and\;N_2$ by PDMS-NaY zeolite composite membranes", Membrane Journal, 20, 47 (2010).
  7. S. I. Jeon, J. H. Park, S. J. Lee, and S. H. Choi, "Fabrication and stability of V/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 62 (2010).
  8. S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
  9. W. H. Chen and I. H. Chiu, "Modeling of transient hydrogen permeation process across a palladium membrane", Appl. Energy, 87, 1023 (2010). https://doi.org/10.1016/j.apenergy.2009.09.030
  10. A. Caravella, G. Barbieri, and E. Drioli, "Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach", Chem. Eng. Sci., 63, 2149 (2008). https://doi.org/10.1016/j.ces.2008.01.009
  11. A. Brunetti, A. Caravella, G. Barbieri, and E. Drioli, "Simulation study of water gas shift reaction in a membrane reactor", J. Membr. Sci., 306, 329 (2007). https://doi.org/10.1016/j.memsci.2007.09.009
  12. G. Chiappetta, G. Clarizia, and E. Drioli, "Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water-gas shift reaction", Chem. Eng. J., 136, 373 (2008). https://doi.org/10.1016/j.cej.2007.05.036
  13. S. Hara, K. Haraya, G. Barbieri, and E. Drioli, "Reaction rate profiles in long palladium membrane reactors for methane steam reforming", Desalination, 233, 359 (2008). https://doi.org/10.1016/j.desal.2007.09.062