HERMITE-HADAMARD-TYPE INEQUALITIES FOR REAL $\alpha$-STAR s-CONVEX MAPPINGS

  • Received : 2010.03.31
  • Accepted : 2010.06.14
  • Published : 2010.09.30

Abstract

In this article some generalized refinements of some inequalities for real quasi-cinvex, convex, concave, s-convex, s-concave, and $\alpha$-star s-convex mappings are obtained.

Keywords

References

  1. S. Abrmovich and J. Pecaric, Functional equalities and some mean values, J. Math. Anal. Appl. 250(2009), 181-186.
  2. M. Alomari, M. Darus and S. S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA 12 (suppl.14)(2009).
  3. M. Alomari, M. Darus and U. S. Kirmaci, Refinement of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl.(2009), doi:10.1016/j.camwa.2009.08.002.
  4. S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trpozoidal formula, Appl. Math. Lett.11 (5) (1998), 91-95. https://doi.org/10.1016/S0893-9659(98)00086-X
  5. S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687-696.
  6. N. Hadjisavvas, The Hadamard's type inequalities quasi-convex functions, Demonstratio Math., 32 (4) (1999), 687-696.
  7. D. A. Ion, Some estimate on the Hermite-Hadamard inequality through quasi-convex functions, Anal. of Univ. of Craiova. Math. Compt. Sci. Ser., 34 (2007), 82-87.
  8. U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146. https://doi.org/10.1016/S0096-3003(02)00657-4
  9. U. S. Kirmaci, M. Klaricic Bakula, M.E. Ozdemir, J. E. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput.193(2007), 26-35. https://doi.org/10.1016/j.amc.2007.03.030
  10. U. S. Kirmaci, M.E. Ä Ozdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 153 (2004), 361-368. https://doi.org/10.1016/S0096-3003(03)00637-4
  11. M.E. Ozdemir, A theorem on mappings with bounded derivatives with applications to quadrature rules and means, Appl. Math. Comput. 138 (2003), 425-434. https://doi.org/10.1016/S0096-3003(02)00146-7
  12. C.E.M. Pearce and J. E. Pecaric, Inequalities for differential mappings with applications to special means and quadrature formula, Appl. Math. Lett 13(2000), 51-55.
  13. G. S. Yang, D. Y. Hwang and K. L. Tseng, Some inequalities for differentiable convex and concave mappings, Comput. Math. Appl. 47 (2004), 207-216. https://doi.org/10.1016/S0898-1221(04)90017-X