A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS

  • Chung, Bo-Hyun (Mathematics section, College of Science and Technology, Hongik University)
  • 투고 : 2010.03.09
  • 심사 : 2010.05.23
  • 발행 : 2010.09.30

초록

Let D be a plane domain whose boundary consists of n components and $C_1$, $C_2$ two boundary components of D. We consider the family $F_1$ of conformal mappings f satisfying f(D) $\subset$ {1 < |w| < ${\mu}(f)$}, $f(C_1)=\{|w|=1\}$, $f(C_2)=\{|w|={\mu}(f)\}$. There are conformal mappings $g_0$, $g_1({\in}F_1)$ onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$\{{\mu}(f)|f\;{\in}\;F_1\}=\{\mu|\mu(g_1)\;{\leq}\;{\mu}\;{\leq}\;{\mu}(g_0)\}$$. And we consider the family $F_n$ of conformal mappings $\tilde{f}$ from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, {$\mu|1$ < ${\mu}\;{\leq}\;{\mu}(g_1)$} ${\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_2\}\;{\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_n\}$ and ${\mu}(\tilde{f})\;{\leq}\;{\mu}(g_0)^n$.

키워드

참고문헌

  1. L.V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
  2. B. Rodin, The method of extremal length, Bull. Amer. Math. Soc., 80 (1974), 587-606. https://doi.org/10.1090/S0002-9904-1974-13517-2
  3. R. E. Thurman, Bridged extremal distance and maximal capacity, Pacific J. Math., 176 (1996), no. 2, 507-528.
  4. Bohyun Chung, A note on geometric applications of extremal length (I), J. Appl. Math. and Computing., 18 (2005), no. 1-2, 603-611.
  5. Bohyun Chung, Some applications of extremal length to analytic functions, Commn. Korean Math. Soc., 21 (2006), no. 1, 135-143. https://doi.org/10.4134/CKMS.2006.21.1.135
  6. Bohyun Chung, Some applications of extremal length to conformal imbeddings, J. Chungcheong Math. Soc., 22 (2009), no. 2, 507-528.
  7. L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta. Math. 83 (1960), 101-129.
  8. Jenkins, J.A., Some results related extremal length, Ann. of Math. Studies 30 (1953), 87-94.
  9. M. Ohtsuka, Dirichlet Problem, Extremal Length, and Prime Ends, Van Nostrand Reinhold, New York, 1970.
  10. M. D. O'neill and R. E. Thurman, Extremal problems for Robin capacity, Complex Variables Theory and Applications, 41 (2000).
  11. L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, New York, 1969.
  12. Shen Yu-Liang, Extremal problems for quasiconformal mappings, Journal of Mathematical Analysis and Applications, 247 (2000), 27-44. https://doi.org/10.1006/jmaa.2000.6806