초록
Let D be a plane domain whose boundary consists of n components and $C_1$, $C_2$ two boundary components of D. We consider the family $F_1$ of conformal mappings f satisfying f(D) $\subset$ {1 < |w| < ${\mu}(f)$}, $f(C_1)=\{|w|=1\}$, $f(C_2)=\{|w|={\mu}(f)\}$. There are conformal mappings $g_0$, $g_1({\in}F_1)$ onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$\{{\mu}(f)|f\;{\in}\;F_1\}=\{\mu|\mu(g_1)\;{\leq}\;{\mu}\;{\leq}\;{\mu}(g_0)\}$$. And we consider the family $F_n$ of conformal mappings $\tilde{f}$ from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, {$\mu|1$ < ${\mu}\;{\leq}\;{\mu}(g_1)$} ${\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_2\}\;{\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_n\}$ and ${\mu}(\tilde{f})\;{\leq}\;{\mu}(g_0)^n$.