References
- A. Agnesi, G.C. Reali, G. Patrini and A. Tomaselli, Numerical evaluation of the Hankel transform: remarks,J. Opt. Soc. Am. A 10 (1993),1872-1874. https://doi.org/10.1364/JOSAA.10.001872
- R. Barakat and E. Parshall, Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy, Appl. Math. Lett. 9 (1996), 21-26.
- R. Barakat, E. Parshall and B.H. Sandler, Zero-order Hankel transform algorithms based on Filon quadrature philosophy for diffraction optics and beam propogation,J. Opt. Soc. Am. A 15 (1998), 652-659.
- R. Barakat and B.H. Sandler, Evaluation of first-order Hankel transforms using Filon quadrature Philosophy, Appl. Math. Lett. 11 (1998), 127-131.
- S.M. Candel, Dual algorithms for fast calculation of the Fourier Bessel transform, IEEE Trans. Acoust. Speech Signal Process ASSP- 29 (1981), 963-972.
- E.C. Cavanagh and B.D.Cook , Numerical evaluation of Hankel Transform via Gaussian-Laguerre polynomial expressions, IEEE Trans. Acoust. Speech Signal Process ASSP- 27 (1979), 361-366.
- A. Erdelyi(Ed.), Tables of Integral Transforms,McGraw-Hill, New York (1954).
- H.Y. Fan, Hankel transform as a transform between two entangled state representations, Phys. Lett. A 313 (2003), 343-350. https://doi.org/10.1016/S0375-9601(03)00799-0
- J.A. Ferrari, Fast Hankel transform of order zero, J. Opt. Soc. Am. A 12 (1995), 1812-1813. https://doi.org/10.1364/JOSAA.12.001812
- J.A. Ferrari, D. Peciante and A. Durba, Fast Hankel transform of nth order,J. Opt. Soc. Am. A 16 (1999),2581-2582. https://doi.org/10.1364/JOSAA.16.002581
- J. Gaskell, Linear systems, Fourier transforms, and Optics, chapter 11,Wiely, New York (1978).
- J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York , 1968
- M. Guizar-Sicairos and J.C. Gutierrez-Vega, Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields ,J. Opt. Soc. Am. A 21 (2004),53. https://doi.org/10.1364/JOSAA.21.000053
- E.V. Hansen, Fast Hankel transform algorithms,IEEE Trans. Acoust. Speech Signal Process ASSP- 33 (1985), 666-671.
- E.V. Hansen, Correction to Fast Hankel transform algorithms,IEEE Trans. Acoust. Speech Signal Process ASSP- 34 (1986), 623-624. https://doi.org/10.1109/TASSP.1986.1164860
- W.E. Higgins and D.C. Munsons Jr., An algorithm for computing general integer order Hankel Transforms,IEEE Trans. Acoust. Speech Signal Process ASSP- 35 (1987), 86-97.
- W.E. Higgins and D.C. Munsons Jr., A Hankel transform approach to tomographic image Reconstruction, IEEE Trans. Med. Imag. 7 (1988), 59-72. https://doi.org/10.1109/42.3929
- L. Knockaret, Fast Hankel transform by fast sine and cosine transform: the Mellin connection,IEEE Trans. Signal Process 48 (2000), 1695-1701. https://doi.org/10.1109/78.845927
- V.S. Kulkarni and K.C. Deshmukh , An inverse quasi-static steady-state in a thick circular plate, J. Frank. Inst 345 (2008), 29-38. https://doi.org/10.1016/j.jfranklin.2007.06.003
- V. Magni, G. Cerullo and D. Silvestri, High-accuracy fast Hankel transform for optical beam Propagation,J. Opt. Soc. Am. A 12 (1992), 2031-2033.
- J. Markham and J.A. Conchello, Numerical evaluation of Hankel transform for oscillating Function,J. Opt. Soc. Am. A 20 (2003), 621-630. https://doi.org/10.1364/JOSAA.20.000621
- D.R. Mook, An algorithm for numerical evaluation of Hankel and Abel transform, IEEE Trans. Acoust. Speech Signal Process ASSP- 31 (1983), 979-985.
- P.K. Murphy and N.C. Gallagher, fast algorithm for computation of zero-order Hankel transform,J. Opt. Soc. Am. 73 (2003), 1130-1137.
- A.V. Oppenheim, G.V. Frish and D.R. Martinez, An algorithm for numerical evaluation of Hankel transform,IEEE Proc.66 (1980), 264-265.
- A.V. Oppenheim, G.V. Frish and D.R. Martinez, Component of Hankel transform using projections ,J. Acoust. Soc. Am. 68 (1980), 523-529. https://doi.org/10.1121/1.384765
- D. Patella, Gravity interpretation using the Hankel transform, Geophysical Prospecting 28 (1980), 744-749. https://doi.org/10.1111/j.1365-2478.1980.tb01257.x
- E.B. Postnikov, About calculation of the Hankel transform using preliminary wavelet transform,J. Appl. Math. 6 (2003),319-325.
- J.J. Reis, R.T. Lynch and J. Butman, Adaptive Harr transform video bandwith reduction stem for RPV's, in Proceeding of the annual meeting on society of Photo Optic Instrumentation Enginering (SPIE),San Diego, CA (1976), 24-45.
- J.D. Secada, Numerical evaluation of the Hankel transform,Compu. Phys. Commun. 116 (1999),278-294. https://doi.org/10.1016/S0010-4655(98)00108-8
- A.E. Siegman, Quasi Fast Hankel Transform, J. Optics. Lett 1 (1977), 13-15. https://doi.org/10.1364/OL.1.000013
-
O.P. Singh, On pseudo-differential operator
${(-x^{-1}D)}^v$ , J. Math. Anal. Appl. 191 (1995), 450-459. https://doi.org/10.1006/jmaa.1995.1140 -
0.P. Singh and J.N. Pandey, The Fourier-Bessel series representation of the pseudo differential operator
${(-x^{-1}D)}^v$ , Proc. Amer. Math. Soc. 115 (1992), 969-976. - V.K. Singh,O.P. Singh and R.K. Pandey, Numerical evaluation of Hankel transform by using linear Legendre multi-wavelets,Compu. Phys. Commun. 179 (2008),424-429. https://doi.org/10.1016/j.cpc.2008.04.006
- V.K. Singh,O.P. Singh and R.K. Pandey, Efficient algorithms to compute Hankel transforms using Wavelets,Compu. Phys. Commun. 179 (2008),812-818. https://doi.org/10.1016/j.cpc.2008.07.005
- I. N. Sneddon, The use of Integral Transforms, McGraw-Hill , 1972.
- B.W. Suter, Fast nth order Hankel transform algorithm,IEEE Trans. Signal Process 39 (1991), 532-536. https://doi.org/10.1109/78.80850
- B.W. Suter and R.A. Hedges, Understanding fast Hankel transform,J. Opt. Soc. Am. A 18 (2001),717-720. https://doi.org/10.1364/JOSAA.18.000717
- Li. Yu, M. Huang, M. Chen, W. Huang and Z. Zhu Quasi-discrete Hankel transform, Opt.Lett. 23 (1998), 409-411. https://doi.org/10.1364/OL.23.000409