Hydro-thermal Liquefaction Technology적용 시 유채대를 이용한 Crude oil생산에 미치는 반응온도의 영향

Effect of Temperatures to Crude Oil Productions with Rapeseed Straw on Application of Hydro-thermal Liquefaction Technology

  • 신중두 (국립농업과학원 기후변화생태과) ;
  • 홍승길 (국립농업과학원 기후변화생태과) ;
  • 권순익 (국립농업과학원 기후변화생태과) ;
  • 박우균 (국립농업과학원 기후변화생태과) ;
  • 박상원 (농촌진흥청 연구개발과)
  • Shin, JoungDu (Department of Climate Change & Agricultural Ecology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seung-Gil (Department of Climate Change & Agricultural Ecology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kwon, Soon-Ik (Department of Climate Change & Agricultural Ecology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Woo-Kyun (Department of Climate Change & Agricultural Ecology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, SangWon (Department of Research Project Development, Rural Development Administration)
  • 투고 : 2010.03.16
  • 심사 : 2010.03.29
  • 발행 : 2010.03.31

초록

본 연구는 hydrothermal 액화공정에서는 유채대를 사용하여 액화공정 적용 시 반응 온도에 따른 Crude oil 전환효율을 비교하였다. 촉매제로 NaOH 및 KOH와 같은 촉매제를 사용하여 반응온도 $180{\sim}320^{\circ}C$범위에서 $20^{\circ}C$간격으로 10분 동안 반응시켰다. 액화공정 시스템은 외부전기화로, 교반기 및 5,000 mL의 반응기로 구성되어 있다. 반응기에 식물체 잔사 160g, 증류수 2,000 mL 및 촉매제를 혼합하였으며, 촉매제량은 식물체 잔사량의 10%(wt/wt) 를 투입하였다. Crude oil생산량은 반응온도 $260{\sim}280^{\circ}C$에서 약 36%로 나타났으며, NaOH의 경우 반응온도 $300^{\circ}C$에서 전환효율이 NaOH와 비슷함을 보였다. 촉매제별 Crude oil에 대한 발열량 변화는 NaOH를 사용한 경우 반응온도가 증가함에 따라 발열량은 감소하였지만, KOH의 경우 발열량은 증가하는 경향을 보였다.

Hydro-thermal liquefaction technology for rapeseed straws was investigated the biomass conversion rate with different catalysts and reaction temperatures. NaOH and KOH were used for catalysts, and the reaction temperature were ranged from 180 to $320^{\circ}C$ at every $20^{\circ}C$ of intervals for 10 minutes. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160g), 2,000 mL of distilled water and 10% (wt/wt) of catalyst to plant residue were fed into the reactor. It was observed that the maximum crude oil yield was about 36% at temperature range, $260{\sim}280^{\circ}C$ with KOH and at $300^{\circ}C$ with NaOH, respectively. It was observed that the more calorific values of crude oil, the higher reaction temperature with KOH, but it had the reverse pattern in NaOH.

키워드

참고문헌

  1. Appell, H.R., Fu, Y.C., Friedman, S., Yavorsky, P.M. and Wender, I., "Converting organic wastes to oil, report of investigation 7560. Pittsburg, PA, US Bureau of Mines, 1971.
  2. Boocock, D.G.B., Mackay, D. and Lee, P., "Wood liquefaction, extended batch reactions Raney nickel catalyst", Canadian J. Chem Eng 60, pp. 802-808 (1982). https://doi.org/10.1002/cjce.5450600612
  3. Beckman, D. and Boocock, D.G.B., "Liquefaction of wood by rapid hydropyrolysis". Canadian J. Chem Eng 61, 80-86 (1983). https://doi.org/10.1002/cjce.5450610114
  4. Demirbas, A., "Catalytic conversion of residual lignocellulosic materials to an acetone-soluble oil", Fuel Science and Technology Int 9, pp. 425-433 (1991). https://doi.org/10.1080/08843759108942276
  5. Demirbas, A., "Chemicals from forest products by efficient extraction methods", Fuel Science and Technolog Int 12, pp. 417-431 (1994). https://doi.org/10.1080/08843759408916186
  6. Eager, R.I., Mathews, J.F. and Pepper, J.M., "Liquefaction of aspen poplar wood", Canadian J. Chem Eng 60, pp. 289-294 (1982). https://doi.org/10.1002/cjce.5450600212
  7. Maldas, D. and Shiraishi, N., "Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst", Biomass Bioenergy 12, pp. 273-279 (1997). https://doi.org/10.1016/S0961-9534(96)00074-8
  8. Matsui, T., Nishihara, A., Ueda, C., Ohtsuki, M., Ikenaga, N. and Suzuki, T., "Liquefaction of microalgae with iron catalyst", Fuel 76, pp. 1043-1048 (1997). https://doi.org/10.1016/S0016-2361(97)00120-8
  9. Minowa, T., Kondo, T. and Sudirjo, T.S., "Thermochemical liquefaction of Indonesian biomass residues", Biomass Bioenergy 14, pp. 517-524 (1998). https://doi.org/10.1016/S0961-9534(98)00006-3
  10. Selhan, K., Thallada, B., Akinori, M., Yusaku, S. and Azhar, U., "Low temperature hydrothermal treatment of biomass, effect of reaction parameters on products and boiling point distributions". Energy fuels 18, pp. 234-241 (2004). https://doi.org/10.1021/ef030133g
  11. Qian. Y.J., Zuo, C.J., Tan, J. and He, J.H., "Structure analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass", Energy 32, pp. 196-202 (2007). https://doi.org/10.1016/j.energy.2006.03.027
  12. Qu, Y.X., Wei, X.M. and Zhong, C.L., "Experimental study on the direct liquefaction of Cunninghamia lanceolata in water", Energy 28, pp. 597-601 (2003). https://doi.org/10.1016/S0360-5442(02)00178-0
  13. Yan, Y.J., Xu, J., Li, T.C. and Ren, Z.W., "Liquefaction of sawdust for liquid fuel", Fuel Process Technol 60, pp. 135-143 (1999). https://doi.org/10.1016/S0378-3820(99)00026-0
  14. Zhong, C.L. and Wei, X.M., "A comparative experimental study on the liquefaction of wood", Energy 29, pp. 1731-1741 (2004). https://doi.org/10.1016/j.energy.2004.03.096
  15. Demirbas, A., "A mechanism of liquefaction and pyrolysis reactions of biomass", Energy Convers Mgmt 41, pp. 633-646 (2000). https://doi.org/10.1016/S0196-8904(99)00130-2
  16. Tarabanko, V.E., Gulbis, G.R. and Kudrashev, A.V., "Liquefaction of wood with alkali metal formats at atmospheric pressure", Khimiya Drevesiny 1, pp. 95-99 (1989).
  17. Ogi, T. and Yokoyama, S., "Liquid fuel production from wood biomass by direct liquefaction", Sekiyu Gakkaishi 36, pp. 73-84 (1993). https://doi.org/10.1627/jpi1958.36.73
  18. Demirbas, A., "Aqueous glycerol delignification of wood chips and ground wood", Bioresource Technology 63, pp. 179-185 (1998). https://doi.org/10.1016/S0960-8524(97)00063-1
  19. Minowa, T., Ogi, T., Dote, Y. and Yokoyama, S., "Effect of lignin content on direct liquefaction of bark", Int Chem Eng 34, pp. 428-430 (1994).
  20. Lehmann, J., Gaunt, J., and Rondan, M., "Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and adaptation strategies for Global Changes II", pp. 403-427 (2006). https://doi.org/10.1007/s11027-005-9006-5
  21. Gaunt, J. and Lehmann, J., "energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production", Environ. Sci. Technol 42, pp. 4152-4158 (2008). https://doi.org/10.1021/es071361i
  22. Ucart, S. and Ozkan, A.R., "Characterization of products from the pyrolysis of rapeseed oil cake", Bioresource Technol 99, pp. 8771-8776 (2008). https://doi.org/10.1016/j.biortech.2008.04.040
  23. Winsley, P. "Bio-char and bioenergy production for climate change mitigation", New Zealand Science Review 64(1), pp. 5-10 (2007).