Abstract
Using the properties of the concave function, we show that the Hausdorff dimension of the product $C_{\frac{a+b}{2},\frac{a+b}{2}}{\times}C_{\frac{a+b}{2},\frac{a+b}{2}}$ of the same symmetric Cantor sets is greater than that of the product $C_{a,b}{\times}C_{a,b}$ of the same anti-symmetric Cantor sets. Further, for $1/e^2$ < a, b < 1/2, we also show that the dimension of the product $C_{a,a}{\times}C_{b,b}$ of the different symmetric Cantor sets is greater than that of the product $C_{\frac{a+b}{2},\frac{a+b}{2}}{\times}C_{\frac{a+b}{2},\frac{a+b}{2}}$ of the same symmetric Cantor sets using the concavity. Finally we give a concrete example showing that the latter argument does not hold for all 0 < a, b < 1/2.