미계측 유역의 유출량 산정을 위한 합성단위도 개발

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed

  • 최용준 (충남대학교 토목공학과) ;
  • 김주철 (한국수자원공사 수자원연구원) ;
  • 정동국 (한남대학교 건설시스템공학과)
  • 투고 : 2010.03.24
  • 심사 : 2010.04.21
  • 발행 : 2010.05.30

초록

The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

키워드

과제정보

연구 과제 주관 기관 : 한남대학교

참고문헌

  1. 전지홍, 최동혁, 김정진, 김태동(2009). 수질학적 관점에서의 수문모델 유출량 보정 방법 평가. 수질보전 한국물환경학회지, 25(3), pp. 432-440.
  2. 정성원, 김동필, 문장원, 이창용, 이대희(2000). 시험유역의 운영 및 수문특성 조사.연구-합성단위도 개발을 중심으로. 한국건설기술연구원.
  3. 조홍제(1987). 지형학적 수문응답특성에 의한 선형저수지 모델 해석. 한국수자원학회논문집, 20(2), pp. 117-126.
  4. 최용준, 김주철, 김재한(2009). 배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가. 한국수자원학회논문집, 42(11), pp. 897-909. https://doi.org/10.3741/JKWRA.2009.42.11.897
  5. 최용준, 김주철, 정관수(2010). 배수경로 이질성을 기반으로 한 Nash 모형의 매개변수 동정. 한국수자원학회논문집, 43(1), pp. 1-13.
  6. 홍일표, 고재웅(1999). 하천의 프랙탈 특성을 고려한 지형학적 순간단위도의 개발(I). 한국수자원학회논문집, 32(5), pp. 565-577.
  7. Botter, G. and Rinaldo, A. (2003). Scale effect on geomorphologic and kinematic dispersion. Water Resources Research, 39(10), 1286. doi:10.1029/2003WR002154.
  8. Di Lazzaro, M. (2009). Regional analysis of storm hydrographs in the resealed width function framework. Journal of Hydrology, doi:10.1016/j.jhydrol.2009.04.027.
  9. D'odorico, P. and Rigon, R. (2003). Hillslope and channel contributions to the hydrologic response. Water Resources Research, 39(5), 1113. doi:10.1029/2002WR001708.
  10. Nash, J. E. (1957). The form of the instantaneous unit hydrograph. IASH Assemblee Generale de Toronto, 3, pp. 114-121.
  11. Rinaldo, A., Rigon, R., and Marani, M. (1991). Geomorphological dispersion. Water Resources Research, 27(4), pp. 513-525. https://doi.org/10.1029/90WR02501
  12. Rodrigueze-Iturbe, I. and Valdes, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6), pp. 1409-1420. https://doi.org/10.1029/WR015i006p01409
  13. Rosso, R. (1984). Nash model relation of Horton order ratios. Water Resources Research, 20(7), pp. 914-920. https://doi.org/10.1029/WR020i007p00914
  14. Saco, P. M. and Kumar, P. (2002). Kinematic dispersion in stream networks - 1. Coupling hydraulics and network geometry. Water Resources Research, 38(11), pp. 26-1-26-14.
  15. Van der Tak, L. D. and Bras, R. L. (1990). Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. Water Resources Research, 26(10), pp. 2393-2400. https://doi.org/10.1029/WR026i010p02393