저온플라즈마에 의한 질소산화물의 제거에 관한 연구

A Study on Removal of NOx by Low Temperature Plasma

  • 박희재 (부경대학교 안전공학부) ;
  • 이내우 (부경대학교 안전공학부) ;
  • 최재욱 (부경대학교 안전공학부) ;
  • 임우섭 (한국소방산업기술원 소방산업기술연구소)
  • Park, Hei-Jae (School of Safety Engineering, Pukyong National University) ;
  • Lee, Nae-Woo (School of Safety Engineering, Pukyong National University) ;
  • Choi, Jae-Wook (School of Safety Engineering, Pukyong National University) ;
  • Lim, Woo-Sub (Korea Fire Industry Technology Institute)
  • 투고 : 2010.03.15
  • 심사 : 2010.04.15
  • 발행 : 2010.08.31

초록

가스 중에 포함되어 있는 질소산화물을 안전하게 처리하기 위하여 저온 플라즈마 반응기를 제작하여 반응기내에 공급되는 반응물질의 유량과 방전주입전력량에 대한 장치의 특성을 실험적으로 조사하고, 유효성을 검정하였다. 반응가스는 $NO/N_2$ 혼합가스와 $N_2/O_2$ 혼합가스를 이용하여 초기 NO 농도를 설정하고, 유속을 1~4 l/min으로 공급하였다. 반응물질의 유량이 증가할 때 NO의 감소율이 낮고, 방전주입전력이 높을 때 NO의 분해가 용이하였다. 또한 반응물질의 지연시간이 길고 방전주입전력이 높을수록 NO의 분해에너지 효율이 높았으며, 유량이 많고 방전 주입 전력량이 증가할수록 오존의 생성량이 증가하였다.

In this study, we made low temperature plasma reactor in order to treat safely $NO_x$ which included in the gas. We investigated experimently and inspected efficiency characteristics of equipment about flow rate of reactant material and discharge input power which supplied into reactor. As a reaction gas, by using mixture gas of $NO/N_2$ and $N_2/O_2$, we setted up initial NO concentration and supplied the speed of a current to 1~4 l/min. When the amount of flow increased, reduction rate of NO was low. Also when discharge input power was high, decomposition of NO was easy. Also the longer delay time of reaction material and the higher discharge input power was, the higher decomposition energy efficiency was. And when the amount of flow was much, and the more discharge input power increased, the more ozone generated.

키워드

참고문헌

  1. Penetrante, B. M., Hsiao, M. C., Merritt, B. T., Vogtlin, G. E. and Wallman, P. H., "Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processing of NO in $N_2$," IEEE Trans. Plasma Sci., 23, 679(1995). https://doi.org/10.1109/27.467990
  2. Chang, J. S., Myint, T. Chakrabarti, A. and Miziolek, A., "Removal of Carbon Tetrachloride from Air Stream by a Corona Torch Reactor," Jpn. J. Appl. Phys. Vol. 36(1997).
  3. Gasparik, R., Gasparikova, M., Yamabe, C., Satoh, S. and Ihara, S., "$DeNO_x$ Characteristics of Tungsten and Copper Wire Electrodes in Wire-to-Plane Configuration under Condition of DC Streamer Corona," Jpn. J. Appl. Phys. Vol. 37(1998).
  4. Chang, J. S., Kelly, A. J. and Crowley, J. M., "Handbook on Electrostatic Processes," Marcel Dekker, New York(1995).
  5. Chae, O. J., Chun, Y. N. and Kim, K. Y., "Combined Removal of $SO_2$ and $NO_x$ from Simulated Flue Gas Using Pulse Streamer Corona," Korean Society of Evinronmental Engineers, Vol. 5, No. 3(2000).
  6. Higashi, M. and Fujii, K., "Thermal of Exhaust Gas from Diesel Powered Vehicles, " Journal of Electrostatics, Vol 21, No. 1(1997).
  7. Ito, T., "Improvement of Environment by Using Discharge," Proceedings of the Institiute of Electrostatics Japan, Vol. 21-1, (1997).
  8. Urashima, K., Chang, J. S. and Ito, T., "Reduction of $NO_x$ from Combustion Flue Gases by Superimposed Barrier Discharge Plasma Reactors," IEEE Transactions on Industry Applications, Vol. 33, No. 4(1997).
  9. Veldhuizen, E. M., Rutgers, W. R. and Bityurin, V. A., "Energy Efficiency of NO Removal by Pulsed Corona Discharges," Plasma Chemistry and Plasma Processing, Vol. 16, No. 2(1996).
  10. Oda, T., Kato, T., Takahashi, T. and Shimizu, K., "Nitric Oxide Decomposition in Air by Using Non-thermal Plasma Processing with Additives and Catalyst," Journal of Electrostatics 42(1997).
  11. Stephen, R. T., "An Introduction nto Combustion," McGraw-Hill International Editions(2006).