Support Effect of Nano Structured Carbon Nano Sphere and Nano Bowl of Carbon in the Phenol Hydroxylation and its Solvent Dependence

나노구조를 갖는 중공구형 및 중공반구형 다공성 탄소 담체가 페놀 수산화 반응에 미치는 영향 및 용매 의존도

  • 권송이 (한국화학연구원 그린화학연구단) ;
  • 윤성훈 (한국화학연구원 그린화학연구단) ;
  • 김희영 (한국화학연구원 그린화학연구단) ;
  • 이재욱 (서강대학교 화공생명공학과) ;
  • 이철위 (한국화학연구원 그린화학연구단)
  • Received : 2010.03.11
  • Accepted : 2010.04.16
  • Published : 2010.08.31

Abstract

Carbon nano sphere(CNS) and nano bowl of carbon(NBC) containing 1.0 wt% copper were prepared by impregnation method and their catalytic activity was compared in the phenol hydroxylation with hydrogen peroxide in the presence of water and acetonitrile as a solvent, respectively. Cu content of catalysts was determined by EDS, and BET, pore volume, pore size and pore size distribution were compared. For both catalysts, phenol conversion, $H_2O_2$ efficiency and yield of catechol and hydroquinone were higher in the presence of water as a solvent than those in the presence of actonitrile. And catalytic activity such as phenol conversion and $H_2O_2$ efficiency of 1.0 Cu/CNS is about two times higher than that of 1.0 Cu/NBC in water solvent.

나노구조를 갖는 중공구형(CNS) 및 중공반구형(NBC) 다공성 탄소 담체에 각각 약 1.0 wt%의 구리를 담지시켜 두 종류의 촉매를 제조하였고 과산화수소수에 의한 페놀의 수산화 반응에서 촉매의 성능을 두 종류의 서로 다른 용매(물, 아세토니트릴)에 대하여 비교 분석하였다. 촉매에 담지된 구리의 양은 EDS 분석으로 확인하였고 비표면적, 기공 부피, 기공 분포도 등을 비교 분석하였다. 두 종류의 촉매에서 모두 아세토니트릴보다 물에서 더 높은 전환율과 과산화수소 유효도 및 카테콜과 하이드로퀴논의 생성율을 얻을 수 있었고, 물을 용매로 사용했을 때 1.0 Cu/CNS 촉매가 1.0 Cu/NBC 촉매보다 50% 이상의 전환율과 과산화수소 유효도를 보였다.

Keywords

References

  1. Taramasso, M., Perego, G. and Notari, B., "Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides," US Patent No. 4,410,501(1983).
  2. Xiao, F. S., Sun, J. M., Meng, X. J., Yu, R. B., Yuan, H. M., Xu, J., Song, T. Y., Jiang, D. Z. and Xu, R. R., "Synthesis and Structure of Copper Hydroxyphosphate and Its High Catalytic Activity in Hydroxylation of Phenol by $H_2O_2$," J. Catal., 199, 273-281(2001). https://doi.org/10.1006/jcat.2001.3166
  3. Zhu, K. Z., Liu, C. B., Ye, X. K. and Wu, Y., "Catalysis of Hydrotalcite-like Compounds in Liquid Phase Oxidation: (I) Phenol Hydroxylation," Appl. Catal. A, 168, 365-367(1998). https://doi.org/10.1016/S0926-860X(97)00366-9
  4. Xiao, F. S., Sun, J., Meng, X., Yu, R., Yuan, H., Jiang, D., Qiu, S. and Xu, R., "A Novel Catalyst of Copper Hydroxyphosphate with High Activity in Wet Oxidation of Aromatics," Appl. Catal. A: General, 207, 267-271(2001). https://doi.org/10.1016/S0926-860X(00)00679-7
  5. Zhang, G., Long, J., Wang, X., Zhang, Z., Dai, W., Liu, P., Li, Z., Wu, L. and Fu, X., "Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation," Langmuir, 26, 1362-1371(2010). https://doi.org/10.1021/la902436s
  6. Park, J. N., Shin, C. H., Baeg, J. O. and Lee, C. W., "Hydroxylation of Phenol over (Fe, Co)/Zeolite Catalysts for the Selective Synthesis of Catechol, " Korean Chem. Eng. Res., 44, 387-391(2006).
  7. Reddy, J. S., Sivasanker, S. and Ratnasamy, P., "Hydroxylation of Phenol over TS-2, a Titanium Silicate Molecular Sieve," J. Mol. Catal., 71, 373-381(1992). https://doi.org/10.1016/0304-5102(92)85027-D
  8. Wang, L., Kong, A., Chen, B., Ding, H., Shan, Y. and He, M., "Direct Synthesis, Characterization of Cu-SBA-15 and Its High Catalytic Activity in Hydorxylation of Phenol by $H_2O_2$," J. Mol. Catal. A, 230, 143-150(2005).
  9. Sun, J., Meng, X., Shi, Y., Wang, R., Feng, S., Jiang, D., Xu, R. and Xiao, F. S., "A Novel Catalyst of Cu-Bi-V-O Complex in Phenol Hydroxylation with Hydrogen Peroxide," J. Catal., 193, 199-206(2000). https://doi.org/10.1006/jcat.2000.2901
  10. Tang, H., Ren, Y., Yue, B., Yan, S. and He, H., "Cu-incorporated Mesoporous Materials: Synthesis, Characterization and Catalytic Activity in Phenol Hydroxylation," J. Mol. Catal. A:Chem., 260, 121-127(2006). https://doi.org/10.1016/j.molcata.2006.07.019
  11. Yoon, S. B., Sohn, K., Kim, J. Y., Shin, C. H., Yu, J. S. and Hyeon, T., "Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures", Adv. Mater., 14, 19-21(2002). https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
  12. Abdi, S. H. R., Kim, Y. J., Park, Y. K. and Lee, C. W., "Nano Bowls of Carbon by Oxidative Chopping of Carbon Nano Sphere," Chem. Lett., 36, 1202-1203(2007). https://doi.org/10.1246/cl.2007.1202
  13. Wang, J., Park, J. N., Jeong, H. C., Choi, K. S., Wei, X. Y., Hong, S. I. and Lee, C. W., "$Cu^{2+}-Exchanged$ Zeolites as Catalysts for Phenol Hydroxylation with Hydrogen Peroxide," Energy. Fuels, 18, 470-476(2004). https://doi.org/10.1021/ef0300904
  14. Parida, K. M. and Mallick, S., "Hydroxyl of Phenol over Molybdovanadophosphoric Acid Modified Zirconia," J. Mol. Catal. A: Chem, 279, 104-111(2008). https://doi.org/10.1016/j.molcata.2007.10.005
  15. Shylesh, S., Radhika, T., Sreeja Rani, K. and Sugunan, S., "Synthesis, Characterization and Catalytic Activity of $Nd_2O_3$ supPored $V_2O_5$ Catalysts," J. Mol. Catal. A: Chem, 236, 253-259(2005). https://doi.org/10.1016/j.molcata.2005.04.015
  16. Thangaraj, A., Puthoor, L. and Sivasanker, S., "Solvent Effects in the Hydroxylation of Phenol with $H_2O_2$ over TS-1," Indian. J. Chem., 33A, 255-258(1994).
  17. Hari Prasad Rao, P. R. and Ramaswamy, A. V., "Catalytic Hydroxylation of Phenol over a Vanadium Silicate Molecular Sieve with MEL Structure," Appl. Catal. A: General, 93, 123-130(1993). https://doi.org/10.1016/0926-860X(93)85188-U