DOI QR코드

DOI QR Code

Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings

면내 압축 및 전단하중을 받는 적층복합판의 좌굴 해석

  • Lee, Won-Hong (Department of Civil Engineering, Jinju National University) ;
  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering, Kongju National University)
  • 이원홍 (진주산업대학교 토목공학과) ;
  • 한성천 (대원대학 철도건설과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Received : 2010.10.21
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

In this paper, we investigate the buckling analysis of laminated composite plates, using a improved assumed natural strain shell element. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. The eigenvalues of the laminated composite plates are calculated by varying the width-thickness ratio and angle of fiber. To improve an shell element for buckling analysis, the new combination of sampling points for assumed natural strain method was applied and the refined first-order shear deformation theory which allows the shear deformation without shear correction factor. In order to validate the present solutions, the reference solutions are used and discussed. The results of laminated composite plates under the in-plane shear loading may be the benchmark test for the buckling analysis.

본 논문에서는 개선된 자연변형률 쉘 요소를 이용한 적층복합판의 좌굴하중을 연구하였다. 면내 잠김과 전단 잠김 현상을 극복하기 위하여 가정자연변형률 방법을 이용하였고, 면내 압축 및 전단하중이 작용하는 경우에 폭-두께 비 및 파이버의 보강방향의 변화에 따른 적층복합판의 고유치 문제를 연구하였다. 쉘 요소의 성능 향상을 위해 새로운 보간점의 조합을 이용한 가정변형률 방법을 사용하였으며 전단보정계수 없이 전단변형을 고려할 수 있는 개선된 1차 전단변형이론을 적용하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 새로운 예제도 추가적으로 연구하였다. 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 면내 전단하중에 의한 좌굴하중의 예측은 향후 관련 연구에 비교자료로 활용될 수 있을 것이다.

Keywords

References

  1. H. C. Huang and E. Hinton E, "A new nine node degenerated shell element with enhanced membrane and shear interpolation", International Journal for Numerical Methods in Engineering, Vol. 22, pp. 73-92, 1986. https://doi.org/10.1002/nme.1620220107
  2. S. W. Yoo and C. K. Choi, "Geometrically nonlinear analysis of laminated composite by an improved degenerated shell element", Struct .Eng. Mech.,Vol. 9(1), pp. 99-110, 2000. https://doi.org/10.12989/sem.2000.9.1.099
  3. H. Ma and W. Kanok-Nukulchai, "On the application of assumed strained methods", In: Kanok-Nukulchai et al., editors. Structural engineering and construction, achievement, trends and challenges, AIT, Bankok, 1989.
  4. S. C. Han, K. D. Kim and W. Kanok-Nukulchai, "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Structural Engineering and Mechanics, Vol. 18(6), pp. 807-829, 2004. https://doi.org/10.12989/sem.2004.18.6.807
  5. K. D. Kim, G. R. Lomboy and S. C. Han, "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Comput. Mech., Vol. 30(4), pp. 330-342, 2003. https://doi.org/10.1007/s00466-003-0415-6
  6. 이원홍, 한성천, 박원태, "점진기능재료(FGM)판의 휨, 진동 및 좌굴해석", 한국산학기술학회논문집, 제9권 제4호, pp. 1043-1049, 2008.
  7. Q. Yunqian, F. Norman, and J. Knight, "A refined first-order shear-deformation theory and its justification by plane-strain bending problem of laminated plates", International Journal of Solids and Structures, Vol. 33(1), pp. 49-64, 1996. https://doi.org/10.1016/0020-7683(95)00010-8
  8. H. V. Lakshminarayana and K. Kailash, "A shear deformable curved shell element of quadrilateral shape", Computers & Structures, Vol. 33, pp. 987- 1001, 1989. https://doi.org/10.1016/0045-7949(89)90434-3
  9. R. H. MacNeal and R. L. Harder, "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, Vol. 1, pp. 3-20, 1985. https://doi.org/10.1016/0168-874X(85)90003-4
  10. M. L. Bucalem and K. J. Bathe, "Higher-order MITC general shell elements", International Journal for Numerical Methods in Engineering, Vol. 36, pp. 3729- 3754, 1993. https://doi.org/10.1002/nme.1620362109
  11. K. D. Kim, and T. H. Park, "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., Vol. 13(4), pp. 387-.410, 2002. https://doi.org/10.12989/sem.2002.13.4.387
  12. J. N. Reddy, "Mechanics of laminated composite plates and shells", CRC Press: Florida, 2004.
  13. J. M. Whitney, "Bending-extensional coupling in laminated plates under transverse loading", J. Comput. Mater., Vol. 3, pp. 20-28, 1969. https://doi.org/10.1177/002199836900300102
  14. O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method",. McGraw-Hill, London, 1989.
  15. O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method". Butterworth-Heinemann, London, 2000.
  16. XFINAS, Nonlinear Structural Dynamic Analysis System, Asian Institute of Technology & Konkuk University, Korea, 2008.
  17. Y. Zhang and F. L. Mathews, "Initial buckling of curved panels of generally layered composite materials. Composite Struct., Vol. 1, pp. 3-30, 1983. https://doi.org/10.1016/0263-8223(83)90014-4