DOI QR코드

DOI QR Code

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film

SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계

  • Oh, Teresa (Division of Semiconductor Design, Cheongju University)
  • Received : 2010.09.07
  • Accepted : 2010.11.19
  • Published : 2010.11.30

Abstract

SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

ICP-CVD 방법에 의해 제작된 SiOC 박막을 유전상수와 화학적 이동의 상관성에 대하여 조사하였다. SiOC 박막은 플라즈마 에너지에 의해서 해리작용과 재결합작용에 의해서 cross link 구조를 갖게 되는 Si-O 와 C-O 결합으로 구성된 $930{\sim}1230\;cm^{-1}$ 영역에서 혼합된 Si-O-C 주 결합으로 이루어졌다. C-O 결합은 $1270cm^{-1}$에서 보여지는 Si-$CH_3$ 결합의 말단부분인 C-H 결합이 전기음성도가 큰 산소에 의해서 끌리는 효과로부터 만들어진 결합이다. 그러나 Si-O 결합은 Si-$CH_3$ 결합이 분해되고 난뒤 2차 이온결합에 의해서 만들어진 결합이다. Si-O 결합의 증가는 주결합에서 오른쪽 결합이 증가하기 때문이며, FTIR 스펙트라에 의해서 red shift로 나타났다. 이러한 결과는 SiOC 박막이 보다 더 안정되고 강한 박막임을 의미한다. 그래서 SiOC 박막은 열처리 후 비정질도가 높고 거칠기가 감소되는 것을 확인하였다.

Keywords

References

  1. Y. L. Hsu, Y. K. Fang, Y. T. Chiang, T. H. Chou and F. C. N Hong, Jpn. J. Appl. Phys. 46, 530, 2007. https://doi.org/10.1143/JJAP.46.530
  2. Z. Q. Fang, B. Claflin, D.C. Look and G. C. Farlow, Journal of Electronic Materials, 36, 307, 2007. https://doi.org/10.1007/s11664-006-0031-2
  3. M. S. Kim, J. H. Kim and E. K. Kim, Journal of the Korean Physical Society, 48, 1552, 2006.
  4. P. de Rouffignac, Z. Li, and R. G. Gordon, Electrochemical and Solid State Letters, 7, G360, 2004.
  5. P. Jakob, B. N. J. Persson, Journal of Chemical Physics, 109, 8641, 1998. https://doi.org/10.1063/1.477531
  6. J. Heo, H. J. Kim, J. H. Han, J. W. Shon. Thin Solid Films, 2007, 515: 5035-5039. https://doi.org/10.1016/j.tsf.2006.10.095
  7. H. Tavana, F. Simon, K. Grundke, D. Y. Kwon, M. L. Hair, A. W. Neumann, Journal of Colloid and Interface Science, 291, 497, 2005. https://doi.org/10.1016/j.jcis.2005.05.001
  8. T. Oh, IEEE Trans. Nanotechnology, 5, 23, 2006. https://doi.org/10.1109/TNANO.2005.858591
  9. R. Navamathavan and C. K. Choi, Journal of the Korean Physical Society, Vol. 48, pp. 1675-1679, 2006.
  10. T. Oh, Jpn. J. Appl. Phys. Vol. 44, pp.4103-4107, 2005. https://doi.org/10.1143/JJAP.44.4103
  11. J. Widodo, W. Lu, S. G. Mhaisalkar, L. C. Hsia, P. Y. Tan, L. Shen and K. Y. Zeng, Thin Solid Films, 462-463, 213-218, 2004. https://doi.org/10.1016/j.tsf.2004.05.027
  12. A. Grill and D. A. Neumayer, J. Appl. Phys. Vol. 94, pp. 6697-6707,2003. https://doi.org/10.1063/1.1618358
  13. M. K. Mazumder, R. Moriyama, D. watanabe, C. Kimura, H. Aoki and T. Sugino, Jpn. J. Appl. Phys. 46, 2007. 2006-2010.
  14. L. D. Yu, S. Lei, Z. S. Dong, W. Yi, L. X. Yan and H. R. Qi, Chin. Phys. Soc. 16, 240, 2007. https://doi.org/10.1088/1009-1963/16/1/041
  15. M. Damayanti, J. Widodo, T. Sritharan, S. G. Mhaisalkar, W. Lu, Z. H. Gan, K. Y. Zeng and L. C. Hsia, Materials Science and Engineering B, 121, 193, 2005. https://doi.org/10.1016/j.mseb.2005.03.030