Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer

ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정

  • Na, Jeong Gil (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Choi, Jae Boong (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Moon, Ji Hoon (Sungkyunkwan Advanced Institute of Nano Technology, Sungkyunkwan University) ;
  • Lim, Sung Kyu (National Nanofab Center) ;
  • Park, Sang Hyun (National Nanofab Center) ;
  • Yi, Hun Jung (Manufacturing Technology Team, Semiconductor Business, Samsung Electronics) ;
  • Chae, Seung Ki (Manufacturing Technology Team, Semiconductor Business, Samsung Electronics) ;
  • Yun, Ju Young (Vacuum Center, Korea Research Institute of Standards and Science) ;
  • Kang, Sang Woo (Vacuum Center, Korea Research Institute of Standards and Science) ;
  • Kim, Tae Sung (School of Mechanical Engineering, Sungkyunkwan University)
  • 나정길 (성균관대학교 기계공학부) ;
  • 최재붕 (성균관대학교 기계공학부) ;
  • 문지훈 (성균관대학교 성균나노과학기술원) ;
  • 임성규 (나노종합팹센터 확산박막팀) ;
  • 박상현 (나노종합팹센터 확산박막팀) ;
  • 이헌정 (삼성전자 생산기술팀) ;
  • 채승기 (삼성전자 생산기술팀) ;
  • 윤주영 (한국표준과학연구원 진공센터) ;
  • 강상우 (한국표준과학연구원 진공센터) ;
  • 김태성 (성균관대학교 기계공학부)
  • Received : 2010.08.26
  • Accepted : 2010.09.26
  • Published : 2010.09.30

Abstract

In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.

Keywords

References

  1. Armstrong, W. E. and Tolliver, D. L. (1974). A Scanning Electron Microscope Investigation of Glass Flow in MOS Integrated Circuit Fabrication, J. Electrochem. Soc., 121, 307-310. https://doi.org/10.1149/1.2401803
  2. Bowing, R. A. and Larrabee, G. B. (1985). Deposition and reflow of phosphosilicate glass, J. Electrochem. Soc., 132, 141-145. https://doi.org/10.1149/1.2113749
  3. Bowling, R. A., Larrabee, G. B., and Fisher, W. G. (1989). Status and Needs of In-Situ Real-time Process Particle Detection, J. Environ. Sci., 32, 22-27.
  4. Dance, D. L., Burghard, R. W., and Markle, R. J. (1992). Reducing Process Equipment Cost of Ownership Through In Situ Contamination Prevention and Reduction, Microcontamination, 10, 21-27.
  5. Hara, T., Suzuki, H., and Furukawa, M. (1984). Reflow of PSG Layers by Halogen Lamp Short Duration Heating Technique, Jpn. J. Appl. Phys., 23, 452-454. https://doi.org/10.1143/JJAP.23.L452
  6. Kim, T., Suh, S. M., Girshick, S. L., Zachariah, M. R., McMurry, P. H., Rassel, R. M., Shen, Z., and Campbell, S. A. (2002). Particle formation during low-pressure chemical vapor deposition from silane and oxygen; Measurement, modeling and film properties, J. Vac. Sci. Technol. A, 20, 413-423. https://doi.org/10.1116/1.1448506
  7. Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H. (1995). Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Technol., 22, 314-324. https://doi.org/10.1080/02786829408959749
  8. Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H. (1995). Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Technol., 22, 293-313. https://doi.org/10.1080/02786829408959748
  9. McMurry, P. H., Nijhawan, S., Rao, N., Ziemann, P., Kittelson, D. B., and Campbell, S. (1996). Particle-Beam Mass-Spectrometer Measurements of Particle Formation During Low- Pressure Chemical-Vapor-Deposition of Polysilicon and SiO2-Films, J. Vac. Sci. Technol. A, 14, 582-587. https://doi.org/10.1116/1.580149
  10. Nijhawan, S., McMurry, P. H., Swihart, M. T., Suh, S. M., Girshick, S. L., Campbell, S. A., and Brockmann, J. E. (2003). An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane, J. Aerosol Sci., 34, 691-711.
  11. Peters, L. (1992). 20 good reasons to use in situ particle monitors, Semicond. Int., 15, 52-57.
  12. Rao, N. P., Wu, Z., Nijhawan, S., Ziemann, P., Campbell, S., Kittelson, D. B., and McMurry, P. (1998). Investigation of particle formation during the plasma enhanced chemical vapor deposition of amorphous silicon, oxide, and nitride films, J. Vac. Sci. Technol. B, 16, 483-489. https://doi.org/10.1116/1.589851
  13. Shen, Z., Kim, T., Kortshagen, U., and McMurry, P. H., Campbell, S. A. (2003). The Formation of Highly Uniform Silicon Nanoparticles in High Density Silane Plasmas, J. Appl. Phys., 94, 2277-2283. https://doi.org/10.1063/1.1591412
  14. Takahashi. K. M. and Daugherty. J. E. (1996). Current capabilities and limitations of in situ particle monitors in silicon processing equipment, J. Vac. Sci. Technol. A, 14, 2983-2993. https://doi.org/10.1116/1.580257
  15. Ziemann, P. J., Liu, P., Rao, N. P., Kittelson, D. B., and McMurry, P. H. (1995). Particle beam mass spectrometry of submicron particles charged to saturation in an electron beam, J. Aerosol. Sci., 26, 745-756. https://doi.org/10.1016/0021-8502(95)00009-2