Electrode Properties of Graphene and Graphene-Based Nanocomposites for Energy Storage Devices

그래핀 및 그래핀 기반 나노복합체의 에너지저장소자용 전극 특성

  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Sang Ouk (Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 김광만 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 김상욱 (한국과학기술원 신소재공학과)
  • Received : 2010.02.10
  • Accepted : 2010.03.08
  • Published : 2010.06.30

Abstract

Graphene is a two-dimensional nanosheet consisting of honeycomb lattices of $sp^2$ carbon atoms. It is one of promising active materials for the anode of lithium-ion battery and the electrode of supercapacitor, due to its large specific surface area(theoretically $2600m^2\;g^{-1}$), high electric conductivity(typically $8{\times}10^5S\;cm^{-1}$), and mechanical strength. In this review, the synthetic methods of graphene nanosheet and graphene-based nanocomposite are introduced. Also, the electrochemical properties obtainable when the graphene-based materials are adopted to the electrodes of lithium-ion battery and supercapacitor are discussed along with their nanostructures.

그래핀(graphene)은 $sp^2$ 탄소원자들이 벌집 격자를 이룬 형태의 2차원 나노시트를 의미하며, 높은 비표면적(이론치 $2600m^2\;g^{-1}$)과 우수한 전기전도도(전형치 $8{\times}10^5S\;cm^{-1}$) 및 기계적 강도로 인해 리튬이온전지의 음전극 활물질 및 초고용량 커패시터의 전극 활물질로서 사용 가능성이 높아지고 있다. 본 총설에서는 현재까지 알려진 그래핀 나노시트와 그래핀을 기반으로 하는 나노복합체의 제조법을 소개하고, 이를 리튬이온전지와 초고용량 커패시터의 전극소재로 적용하였을 때의 특성을 그 나노구조적 관점과 연관하여 논의하였다.

Keywords

References

  1. Sato, K., Noguchi, M., Demachi, A., Oki, N. and Endo, M., "A Mechanism of Lithium Storage in Disordered Carbons," Science, 264, 556-558(1994). https://doi.org/10.1126/science.264.5158.556
  2. Kashhedikar, N. A. and Maier, J., "Lithium Storage in Carbon Nanostructures," Adv. Mater., 21, 2664-2680(2009). https://doi.org/10.1002/adma.200901079
  3. Liang, M., Luo, B. and Zhi, L., "Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices," Intern. J. Energy Res., 33, 1161-1170(2009). https://doi.org/10.1002/er.1598
  4. Liang, M. and Zhi, L., "Graphene-Based Electrode Materials for Rechargeable Lithium Batteries," J. Mater. Chem., 19, 5871-5878(2009). https://doi.org/10.1039/b901551e
  5. Pumera, M., "Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage," Chem. Record, 9, 211-223(2009). https://doi.org/10.1002/tcr.200900008
  6. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., "Electric Field Effect in Atomically Thin Carbon Films," Science, 306, 666-669(2004). https://doi.org/10.1126/science.1102896
  7. McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud'homme, R. K. and Aksay, I. A., "Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite," Chem. Mater., 19, 4396-4404(2007). https://doi.org/10.1021/cm0630800
  8. Si, Y. and Samulski, E. T., "Exfoliated Graphene Separated by Platinum Nanoparticles," Chem. Mater., 20, 6792-6797(2008). https://doi.org/10.1021/cm801356a
  9. Kane, C. L., "Erasing Electron Mass", Nature, 438, 168-169(2005). https://doi.org/10.1038/438168a
  10. Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T. and Honma, I., "Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries," Nano Lett., 8, 2277-2282(2008). https://doi.org/10.1021/nl800957b
  11. Mukhopadhyay, I., Hoshino, N., Kawasaki, S., Okino, F., Hsu, W.K. and Touhara, H., "Electrochemical Li Insertion in B-Doped Multiwall Carbon Nanotubes," J. Electrochem. Soc., 149, A39-A44(2002). https://doi.org/10.1149/1.1426397
  12. Takamura, T., Endo, K., Fu, L., Wu, Y., Lee, K. J. and Matsumoto, T., "Identification of Nano-Sized Holes by TEM in the Graphene Layer of Graphite and the High Rate Discharge Capability of Li-ion Battery Anodes," Electrochim. Acta, 53, 1055-1061(2007). https://doi.org/10.1016/j.electacta.2007.03.052
  13. Gautier, S., Leroux, F., Frackowiak, E., Faugere, A. M., Rouzaud, J.-N. and Beguin, F., "Influence of the Pyrolysis Conditions on the Nature of Lithium Inserted in Hard Carbons," J. Phys. Chem. A., 105, 5794-5800(2001). https://doi.org/10.1021/jp000892p
  14. Suzuki, T., Hasegawa, T., Mukai, S. R. and Tamon, H., "A Theoretical Study on Storage States of Li Ions in Carbon Anodes of Li Ion Batteries Using Molecular Orbital Calculations," Carbon, 41, 1933-1939(2003). https://doi.org/10.1016/S0008-6223(03)00178-7
  15. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. and Wallace, G. G., "Processable Aqueous Dispersions of Graphene Nanosheets," Nature Nanotech., 3, 101-105(2008). https://doi.org/10.1038/nnano.2007.451
  16. Li, D. and Kaner, R. B., "Graphene-Based Materials," Science, 320, 1170-1171(2008). https://doi.org/10.1126/science.1158180
  17. Wang, C., Li, D., Too, C. O. and Wallace, G. G., "Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries," Chem. Mater., 21, 2604-2606(2009). https://doi.org/10.1021/cm900764n
  18. Wang, G., Shen, X., Yao, J. and Park, J., "Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries," Carbon, 47, 2049-2053(2009). https://doi.org/10.1016/j.carbon.2009.03.053
  19. Guo, P., Song, H. and Chen, X., "Electrochemical Performance of Graphene Nanosheets as Anode Material for Lithium-ion Batteries," Electrochem. Commun., 11, 1320-1324(2009). https://doi.org/10.1016/j.elecom.2009.04.036
  20. Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y. and Jiao, Z., "Li Storage Properties of Disordered Graphene Nanosheets," Chem. Mater., 21, 3136-3142(2009). https://doi.org/10.1021/cm900395k
  21. Wang, X., Zeng, Z., Ahn, H. and Wang, G., "First-Principles Study on the Enhancement of Lithium Storage Capacity in Boron Doped Graphene," Appl. Phys. Lett., 95, 183103(2009). https://doi.org/10.1063/1.3259650
  22. Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H. and Kim, K., "Sn/Graphene Nanocomposite with 3D Architecture for Enhanced Reversible Lithium Storage in Lithium Ion Batteries," J. Mater. Chem., 19, 8378-8384(2009). https://doi.org/10.1039/b914650d
  23. Chou, S.-L., Wang, J.-L., Choucair, M., Liu, H.-K., Stride, J. A. and Dou, S.-X., "Enhanced Reversible Lithium Storage in a Nanosize Silicon/Graphene Composite," Electrochem. Commun., 12, 303-306(2010). https://doi.org/10.1016/j.elecom.2009.12.024
  24. Liu, X., Hu, Y.-S., Muller, J.-O., Schlogl, R., Maier, J. and Su, D. S., "Composites of Molecular-Anchored Graphene and Nanotubes with Multitubular Structure: a New Type of Carbon Electrode," Chem Sus Chem 3, (2010) in press.
  25. Murugan, A. V., Muraliganth, T. and Manthiram, A., "Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Storage," Chem. Mater., 21, 5004-5006(2009). https://doi.org/10.1021/cm902413c
  26. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L. V., Zhang, J., Aksay, I. A. and Liu, J., "Self-Assembled $TiO_2$-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion," ACS Nano 3, 907-914(2009). https://doi.org/10.1021/nn900150y
  27. Choi, D., Wang, D., Viswanathan, V. V., Bae, I.-T., Wang, W., Nie, Z., Zhang, J.-G., Graff, G. L., Liu, J., Yang, Z. and Duong, T., "Li-ion Batteries from $LiFePO_4$ Cathode and Anatase/Graphene Composite Anode for Stationary Energy Storage", Electrochem. Commun., 12, (2010) in press.
  28. Paek, S.-M., Yoo, E. and Honma, I., "Enhanced Cyclic Performance and Lithium Storage Capacity of $SnO_2$/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure," Nano Lett., 9, 72-75(2009). https://doi.org/10.1021/nl802484w
  29. Yao, J., Shen, X., Wang, B., Liu, H. and Wang, G., "In Situ Chemical Synthesis of $SnO_2$-Graphene Nanocomposite as Anode Materials for Lithium-ion Batteries," Electrochem. Commun., 11, 1849-1852(2009). https://doi.org/10.1016/j.elecom.2009.07.035
  30. Yang, S., Cui, G., Pang, S., Cao, Q., Kolb, U., Fang, X., Maier, J. and Mullen, K., "Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: towards High-Performance Anode Materials for Lithium Ion Batteries," ChemSus Chem., 3, (2010) in press.
  31. Xu, C., Wang, X., Yang, L. and Wu, Y., "Fabrication of a Graphene-Cuprous Oxide Composite," J. Solid-State Chem., 182, 2486-2490(2009). https://doi.org/10.1016/j.jssc.2009.07.001
  32. Ji, F., Li, Y.-L., Feng, J.-M., Su, D., Wen, Y.-Y., Feng, Y. and Hou, F., "Electrochemical Performance of Graphene Nanosheets and Ceramic Composites as Anodes for Lithium Batteries," J. Mater. Chem., 19, 9063-9067(2009). https://doi.org/10.1039/b915838c
  33. Ding, Y., Jiang, Y., Xu, F., Yin, J., Ren, H., Zhou, Q., Long, Z. and Zhang, P., "Preparation of Nano-Structured $LiFePO_4$/Graphene Composites by Co-Precipitation method," Electrochem. Commun., 12, 10-13(2010). https://doi.org/10.1016/j.elecom.2009.10.023
  34. Yang, C.-K., "A Metallic Graphene Layer Adsorbed with Lithium," Appl. Phys. Lett., 94, 163115(2009). https://doi.org/10.1063/1.3126008
  35. Choucair, M., Thordarson, P. and Stride, J.A., "Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication," Nature Nanotech., 4, 30-33(2009). https://doi.org/10.1038/nnano.2008.365
  36. Zhu, Z., Su, D., Weinberg, G., Jentoft, R.E. and Schlogl, R., "Wet-Chemical Assembly of Carbon Tube-in-Tube Nanostructures," Small, 1, 107-110(2005).
  37. Murugan, A.V., Muraliganth, T. and Manthiram, A., "Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of $LiFePO_4$/C Nanocomposite Cathodes for Lithium Ion Batteries," J. Phys. Chem., C 112, 14665-14671(2008). https://doi.org/10.1021/jp8053058
  38. Wang, D.-W., Li, F., Zhao, J., Ren, W., Chen, Z.-G., Tan, J., Wu, Z.-S., Gentle, I., Lu, G. Q. and Cheng, H.-M., "Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for High-Performance Flexible Electrode," ACS Nano 3, 1745-1752(2009). https://doi.org/10.1021/nn900297m
  39. Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S., "Graphene-Based Ultracapacitors," Nano Lett., 8, 3498-3502(2008). https://doi.org/10.1021/nl802558y
  40. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M. and Chen, Y., "Supercapacitor Devices Based on Graphene Materials," J. Phys. Chem., C 113, 13103-13107(2009). https://doi.org/10.1021/jp902214f
  41. Chen, Y., Zhang, X., Yu, P. and Ma, Y., "Electrophoretic Deposition of Graphene Nanosheets on Nickel Foams for Electrochemical Capacitors," J. Power Sources, 195, 3031-3035(2010). https://doi.org/10.1016/j.jpowsour.2009.11.057
  42. Li, F., Song, J., Yang, H., Gan, S., Zhang, Q., Han, D., Ivaska, A. and Niu, L., "One-Step Synthesis of Graphene/$SnO_2$ Nanocomposites and Its Application in Electrochemical Supercapacitors," Nanotechnology, 20, 455602(2009). https://doi.org/10.1088/0957-4484/20/45/455602