References
- Tarascon, J.-M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001). https://doi.org/10.1038/35104644
- Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and van Schalkwijk, W., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nature Mater., 4, 366-377(2005). https://doi.org/10.1038/nmat1368
- Bruce, P. G., Scrosati, B. and Tarascon, J.-M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Intern. Ed., 47, 2930-2946(2008). https://doi.org/10.1002/anie.200702505
- Balaya, P., Bhattacharyya, A. J., Jamnik, J., Zhukovskii, Y. F., Kotomin, E. A. and Maier, J., "Nano-Ionics in the Context of Lithium Batteries," J. Power Sources., 159, 171-178(2006). https://doi.org/10.1016/j.jpowsour.2006.04.115
-
Meethong, N., Huang, H. Y. S., Carter, W. C. and Chiang, Y.-M., "Size-Dependent Lithium Miscibility Gap in Nanoscale
$Li_{1-x}\;FePO_4$ ," Electrochem. Solid-State Lett., 10, A134-A138(2007). https://doi.org/10.1149/1.2710960 - Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163(1998). https://doi.org/10.1021/la9713816
-
Bavykin, D. V., Friedrich, J. M. and Walsh, F. C., "Protonated Titanates and
$TiO_2$ Nanostructured Materials: Synthesis, Properties, and Applications," Adv. Mater., 18, 2807-2824(2006). https://doi.org/10.1002/adma.200502696 - Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Titania Nanotubes Prepared by Chemical Processing," Adv. Mater., 11, 1307-1311(1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
- Chen, Q., Zhou, W., Du, G. and Peng, L.-M., "Titanate Nanotubes Made via Single Alkali Treatment," Adv. Mater., 14, 1208-1211(2002). https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
-
Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X. and Zhang, Z., "Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotubed
$H_2Ti_2O_4\;(OH)_2$ ," J. Mol. Catal. A: Chem., 217, 203-210(2004). https://doi.org/10.1016/j.molcata.2004.03.032 -
Bavykin, D. V., Parmon, V. N., Lapkin, A. A. and Walsh, F. C., "The Effect of Hydrothermal Conditions on the Mesoporous Structure of
$TiO_2$ Nanotubes," J. Mater. Chem., 14, 3370-3377(2004). https://doi.org/10.1039/b406378c - Ma, R., Bando, Y. and Sasaki, T., "Direct Rolling Nanosheets into Nanotubes," J. Phys. Chem. B, 108, 2115-2119(2004). https://doi.org/10.1021/jp037200s
-
Zhang, S., Peng, L.-M., Chen, Q., Du, G. H., Dawson, G. and Zhou, W. Z., "Formation Mechanism of
$H_2Ti_3O_7$ Nanotubes," Phys. Rev. Lett., 91, 256103(2003). https://doi.org/10.1103/PhysRevLett.91.256103 - Bavykin, D. V. and Walsh, F. C., "Elongated Titanate Nanostructures and Their Applications," Eur. J. Inorg. Chem., 977-997(2009).
-
Kavan, L., Gratzel, M., Rathousky, J. and Zukal, A., "Nanocrystalline
$TiO_2$ (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties," J. Electrochem. Soc., 143, 394-400(1996). https://doi.org/10.1149/1.1836455 -
Wagemaker, M., Borghols, W. J. H. and Mulder, F. M., "Large Impact of Particle Size on Insertion Reactions. A Case for Anatase
$Li_xTiO_2$ ," J. Am. Chem. Soc., 129, 4323-4327(2009). -
Sudant, G., Baudrin, E., Larcher, D. and Tarascon, J.-M., "Electrochemical Lithium Reactivity with Nanotextured Anatase-Type
$TiO_2$ ," J. Mater. Chem., 15, 1263-1269(2005). -
Hardwick, L. J., Holzapfel, M., Novak, P., Dupont, L. and Baudrin, E., "Electrochemical Lithium Insertion into Anatase-Type
$TiO_2$ : an In Situ Raman Microscopy Investigation," Electrochim. Acta, 52, 5357-5367(2007). https://doi.org/10.1016/j.electacta.2007.02.050 -
Kavan, L., Rathousky, J., Gratzel, M., Shklover, V. and Zukal, A., "Surfactant-Templated
$TiO_2$ (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures," J. Phys. Chem. B, 104, 12012-12020(2000). https://doi.org/10.1021/jp003609v -
Kavan, L., Kalbac, M., Zukalova, M., Exnar, I., Lorenzen, V., Nesper, R. and Gratzel, M., "Lithium Storage in Nanostructured
$TiO_2$ Made by Hydrothermal Growth," Chem. Mater., 16, 477-485(2004). https://doi.org/10.1021/cm035046g -
Zukalova, M., Kalbac, M., Kavan, L., Exnar, I. and Gratzel, M., "Pseudocapacitive Lithium Storage in
$TiO_2$ (B)," Chem. Mater., 17, 1248-1255(2005). https://doi.org/10.1021/cm048249t -
Wagemaker, M., van de Krol, R., Kentgens, A. P. M., van Well, A. A. and Mulder, F. M., "Two Phase Morphology Limits Lithium Diffusion in
$TiO_2$ (Anatase): a Li-7 MAS NMR Study," J. Am. Chem. Soc., 123, 11454-11461(2001). https://doi.org/10.1021/ja0161148 -
Wagemaker, M., Kentgens, A. P. M. and Mulder, F. M., "Equilibrium Lithium Transport between Nanocrystalline Phases in Intercalated
$TiO_2$ Anatase," Nature, 418, 397-399(2002). https://doi.org/10.1038/nature00901 -
Wagemaker, M., Borghols, W. J. H., van Eck, E. R. H., Kentgens, A. P. M., Kearley, G. J. and Mulder, F. M., "The Influence of Size on Phase Morphology and Li-ion Mobility in Nanosized Lithiated Anatase
$TiO_2$ ," Chem. Eur. J., 13, 2023-2028(2007). https://doi.org/10.1002/chem.200600803 - Kim, D. H., Yoon, J. H., Lee, K. S., Jung, Y.-H., Lee, B. R., Jang, J. S., Choi, D.-K., Kim, S.-J., Sun, Y.-K. and Lee, K. S., "Structural Characterization of Titanate Nanotubes for Lithium Storage," J. Nanosci. Nanotech., 8, 5022-5025(2008). https://doi.org/10.1166/jnn.2008.1006
-
Oh, S. W., Park, S.-H. and Sun, Y.-K., "Hydrothermal Synthesis of Nano-Sized
$TiO_2$ Powders for Lithium Secondary Anode Materials," J. Power Sources., 161, 1314-1318(2006). https://doi.org/10.1016/j.jpowsour.2006.05.050 -
Baudrin, E., Cassaignon, S., Koelsch, M., Jolivet, J.-P., Dupont, L. and Tarascon, J.-M., "Structural Evolution during the Reaction of Li with Nano-Sized Rutile Type
$TiO_2$ at Room Temperature," Electrochem. Commun., 9, 337-342(2007). https://doi.org/10.1016/j.elecom.2006.09.022 -
Jiang, C., Honma, I., Kudo, T. and Zhou, H., "Nanocrystalline Rutile
$TiO_2$ Electrode for High-Capacity and High-Rate Lithium Storage," Electrochem. Solid-State Lett., 10, A127-A129(2007). https://doi.org/10.1149/1.2712041 -
Jiang, C., Wei, M., Qi, Z., Kudo, T., Honma, I. and Zhou, H., "Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase
$TiO_2$ Electrode," J. Power Sources., 166, 239-243(2007). https://doi.org/10.1016/j.jpowsour.2007.01.004 -
Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X. and Zhang, Z., "Study on Composition, Structure and Formation Process of Nanotube
$Na_2Ti_2O_4(OH)_2$ ," Dalton Trans., 3898-3901(2003). -
Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F., Yang, Z. Y. and Wang, N., "Formation Mechanism of
$TiO_2$ Nanotubes," Appl. Phys. Lett., 82, 281-283(2003). https://doi.org/10.1063/1.1537518 - Morgado, E. Jr., de Abreu, M. A. S., Pravia, O. R. C., Marinkovic, B. A., Jardim, P. M., Rizzo, F. C. and Araujo, A. S., "A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content," Solid State Sci., 8, 888-900(2006). https://doi.org/10.1016/j.solidstatesciences.2006.02.039
- Ma, R., Fukuda, K., Sasaki, T., Osada, M. and Bando, Y., "Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations," J. Phys. Chem. B, 109, 6210-6214(2005). https://doi.org/10.1021/jp044282r
- Kukovecz, A., Hodos, M., Horvath, E., Radnoczi, G., Konya, Z. and Kiricsi, I., "Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes," J. Phys. Chem. B, 109, 17781-17783(2005). https://doi.org/10.1021/jp054320m
- Cortes-Jacome, M. A., Ferrat-Torres, G., Ortiz, L. F. F., Angeles-Chavez, C., Lopez-Salinas, E., Escobar, J., Mosqueira, M. L. and Toledo-Antonio, J. A., "In Situ Thermo-Raman Study of Titanium Oxide Nanotubes," Catal. Today, 126, 248-255(2007). https://doi.org/10.1016/j.cattod.2007.02.012
-
Zhu, K. R., Yuan, Y., Zhang, M. S., Hong, J. M., Deng, Y. and Yin, Z., "Structural Transformation from
$NaHTi_3O_7$ Nanotube to$Na_2Ti_6O_{13}$ Nanorod," Solid State Commun., 144, 450-453(2007). https://doi.org/10.1016/j.ssc.2007.09.015 - Thorne, A., Kruth, A., Tunstall, D., Irvine, J. T. S. and Zhou, W., "Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity," J. Phys. Chem. B, 109, 5439-5444(2005). https://doi.org/10.1021/jp047113f
- Lan, Y., Gao, X., Zhu, H., Zheng, Z., Yan, T., Wu, F., Ringer, S. P. and Song, D., "Titanate Nanotubes and Nanorods Prepared from Rutile Powder," Adv. Funct. Mater., 15, 1310-1318(2005). https://doi.org/10.1002/adfm.200400353
- Gajovic, A., Friscic, I., Plodinec, M. and Ivekovic, D., "High Temperature Raman Spectroscopy of Titanate Nanotubes," J. Mol. Struct., 924-926, 183-191(2009). https://doi.org/10.1016/j.molstruc.2008.12.072
-
Jung, H.-G., Oh, S. W., Ce, J., Jayaprakash, N. and Sun, Y.-K., "Mesoporous
$TiO_2$ Nano Networks: Anode for High Power Lithium Battery Applications," Electrochem. Commun., 11, 756-759(2009). https://doi.org/10.1016/j.elecom.2009.01.030 -
Wang, Z., Liu, S., Chen, G. and Xia, D., "Preparation and Li-Intercalation Properties of Mesoporous Anatase-
$TiO_2$ Spheres," Electrochem. Solid-State Lett., 10, A77-A80(2007). https://doi.org/10.1149/1.2430567 -
Lee, D.-H., Park, J.-G., Choi, K. J., Choi, H.-J. and Kim, D.-W., "Preparation of Brookite-Type
$TiO_2$ /Carbon Nanocomposite Electrodes for Application to Li Ion Batteries," Eur. J. Inorg. Chem., 878-882(2008). -
Inaba, M., Oba, Y., Niina, F., Murota, Y., Ogino, Y., Tasaka, A. and Hirota, K., "
$TiO_2$ (B) as a Promising High Potential Negative Electrode for Large-Size Lithium-ion Batteries," J. Power Sources., 189, 580-584(2009). https://doi.org/10.1016/j.jpowsour.2008.10.001 -
Zhou, Y., Cao, L., Zhang, F., He, B. and Li, H., "Lithium Insertion into
$TiO_2$ Nanotube Prepared by the Hydrothermal Process," J. Electrochem. Soc., 150, A1246-A1249(2003). https://doi.org/10.1149/1.1597883 - Gao, X. P., Lan, Y., Zhu, H. Y., Liu, J. W., Ge, Y. P., Wu, F. and Song, D. Y., "Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes," Electrochem. Solid-State Lett., 8, A26-A29(2005). https://doi.org/10.1149/1.1833632
- Li, J., Tang, Z. and Zhang, Z., "Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes," Electrochem. Solid-State Lett., 8, A316-A319(2005). https://doi.org/10.1149/1.1904465
-
Xu, J., Jia, C., Cao, B. and Zhang, W. F., "Electrochemical Properties of Anatase
$TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," Electrochim. Acta, 52, 8044-8047(2007). https://doi.org/10.1016/j.electacta.2007.06.077 -
Kim, J. and Cho, J., "Rate Characteristics of Anatase
$TiO_2$ Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature," J. Electrochem. Soc., 154, A542-A546(2007). https://doi.org/10.1149/1.2724756 -
Das, K., Panda, S. K. and Chaudhuri, S., "Solvent-Controlled Synthesis of
$TiO_2$ 1D Nanostructures: Growth Mechanism and Characterization," J. Cryst. Growth., 310, 3792-3799(2008). https://doi.org/10.1016/j.jcrysgro.2008.05.039 -
Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "
$TiO_2$ -B Nanowires," Angew. Chem. Intern. Ed., 43, 2286-2288(2004). https://doi.org/10.1002/anie.200353571 -
Armstrong, A. R., Armstrong, G., Canales, J., Garcia, R. and Bruce, P. G., "Lithium-ion Intercalation into
$TiO_2$ -B Nanowires," Adv. Mater., 17, 862-865(2005). https://doi.org/10.1002/adma.200400795 -
Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "
$TiO_2$ -B Nanowires as Negative Electrodes for Rechargeable Lithium Batteries," J. Power Sources, 146, 501-506(2005). https://doi.org/10.1016/j.jpowsour.2005.03.057 -
Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. and Scrosati, B., "
$TiO_2$ (B) Nanowires as an Improved Anode Material for Lithium-ion Batteries Containing$LiFePO_4$ or$LiNi_{0.5}Mn_{1.5}O_4$ Cahodes and a Polymer Electrolyte," Adv. Mater., 18, 2597-2600(2006). https://doi.org/10.1002/adma.200601232 -
Wilkening, M., Lyness, C., Armstrong, A. R. and Bruce, P. G. "Diffusion in Confined Dimensions:
$Li^+$ Transport in Mixed Conducting$TiO_2$ -B Nanowires," J. Phys. Chem. C, 113, 4741-4744(2009). https://doi.org/10.1021/jp8107792 -
Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "Nanotubes with the
$TiO_2$ -B Structure," Chem. Commun., 2454-2456(2005). -
Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "
$TiO_2$ (B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries," Electrochem. Solid-State Lett., 9, A139-A143(2006). https://doi.org/10.1149/1.2162327 - Tsai, M.-C., Chang, J.-C., Sheu, H.-S., Chiu, H.-T. and Lee, C.-Y., "Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process," Chem. Mater., 21, 499-505(2009). https://doi.org/10.1021/cm802327z
-
Tang, W., "Preparation of Anatase-Type
$TiO_2$ Nanocrystal/Acetylene Black Composites by a Dry Process, and Their Electrochemical Lithium Insertion," J. Mater. Chem., 14, 3457-3461(2004). https://doi.org/10.1039/b405249h -
Yoon, S., Ka, B. H., Lee, C., Park, M. and Oh, S. M., "Preparation of Nanotube
$TiO_2$ -carbon Composite and Its Anode Performance in Lithium-ion Batteries," Electrochem. Solid-State Lett., 12, A28-A32(2009). https://doi.org/10.1149/1.3035981 -
Xu, J., Wang, Y., Li, Z. and Zhang, W. F., "Preparation and Electrochemical Properties of Carbon-Doped
$TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," J. Power Sources, 175, 903-908(2008). https://doi.org/10.1016/j.jpowsour.2007.10.014 -
Wang, Q., Wen, Z. and Li, J., "A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a
$TiO_2$ -B Nanowire Anode," Adv. Func. Mater., 16, 2141-2146(2006). https://doi.org/10.1002/adfm.200500937 -
Wang, Q., Wen, Z. and Li, J., "Carbon Nanotube/
$TiO_2$ Nanotubes Hybrid Supercapacitor," J. Nanosci. Nanotech. 7, 3328-3331(2007). https://doi.org/10.1166/jnn.2007.679 -
Brousse, T., Marchand, R., Taberna, P.-L. and Simon, P., "
$TiO_2$ (B)/Activated Carbon Non-Aqueous Hybrid System for Energy Storage," J. Power Sources, 158, 571-577(2006). https://doi.org/10.1016/j.jpowsour.2005.09.020 -
Wei, M., Qi, Z., Ichihara, M., Honma, I. and Zhou, H., "Ultralong Single-Crystal
$TiO_2$ -B Nanowires: Synthesis and Electrochemical Measurements," Chem. Phys. Lett., 424, 316-320(2006). https://doi.org/10.1016/j.cplett.2006.04.066 -
Wang, Q., Wen, Z. and Li, J., "Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional
$TiO_2$ Nanoparticles," Inorg. Chem., 45, 6944-6949(2006). https://doi.org/10.1021/ic060477x - Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P. and Zhu, H. Y., "Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods," J. Phys. Chem. C, 111, 6143-6148(2007). https://doi.org/10.1021/jp0702595
-
Wang, Y., Wu, M. and Zhang, W. F., "Preparation and Electrochemical Characterization of
$TiO_2$ Nanowires as an Electrode Material for Lithium-ion Batteries," Electrochim. Acta, 53, 7863-7868(2008). https://doi.org/10.1016/j.electacta.2008.05.068