Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries

리튬이온전지용 TiO2 나노튜브 음전극 특성

  • Choi, Min Gyu (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI))
  • 최민규 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀) ;
  • 김광만 (한국전자통신연구원 융합부품소재연구부문 전력제어소자팀)
  • Received : 2010.01.28
  • Accepted : 2010.02.24
  • Published : 2010.06.30

Abstract

In this review, the studies on the electrochemical properties of $TiO_2$ nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated andanalyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of $338mAh\;g^{-1}$(x=1.01) was achieved by the nanotube with $TiO_2(B)$ phase, whereas the theoretical capacity of $TiO_2$ anode was $335mAh\;g^{-1}$(x=1) in the basis of $Li_xTiO_2$ as a product of electrochemical reaction between $TiO_2$ and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of $TiO_2$, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the $TiO_2$ nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.

리튬이온전지의 음전극으로 사용하기 위해 주로 알카리 수열합성법과 열처리에 의해 제조되는 $TiO_2$ 나노튜브의 전기화학적 특성에 관한 연구결과를 조사하여, 그 충방전 특성을 분석하였다. 현재까지 리튬과 $TiO_2$의 전기화학반응으로 생성되는 $Li_xTiO_2$의 이론용량인 $335mAh\;g^{-1}$(x=1)를 초과하는 최대방전용량 $338mAh\;g^{-1}$(x=1.01)을 $TiO_2(B)$ 상을 갖는 나노튜브가 나타내었다. 이것은 리튬의 자가확산이 활성에너지 0.48 eV 정도로 느리므로 이보다 확산거리가 짧도록 $TiO_2$ 나노튜브의 구조를 조정하여 리튬 수송이 원활하도록 하였기 때문이다. 또한 $TiO_2$ 나노튜브 구조체는 벌크상은 물론 표면에서의 뛰어난 이온저장성 때문에 리튬이온전지의 음전극 소재뿐만 아니라 고출력 특성이 필요한 커페시터 소자의 전극소재로도 활용할 수 있다.

Keywords

References

  1. Tarascon, J.-M. and Armand, M., "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414, 359-367(2001). https://doi.org/10.1038/35104644
  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and van Schalkwijk, W., "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nature Mater., 4, 366-377(2005). https://doi.org/10.1038/nmat1368
  3. Bruce, P. G., Scrosati, B. and Tarascon, J.-M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Intern. Ed., 47, 2930-2946(2008). https://doi.org/10.1002/anie.200702505
  4. Balaya, P., Bhattacharyya, A. J., Jamnik, J., Zhukovskii, Y. F., Kotomin, E. A. and Maier, J., "Nano-Ionics in the Context of Lithium Batteries," J. Power Sources., 159, 171-178(2006). https://doi.org/10.1016/j.jpowsour.2006.04.115
  5. Meethong, N., Huang, H. Y. S., Carter, W. C. and Chiang, Y.-M., "Size-Dependent Lithium Miscibility Gap in Nanoscale $Li_{1-x}\;FePO_4$," Electrochem. Solid-State Lett., 10, A134-A138(2007). https://doi.org/10.1149/1.2710960
  6. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163(1998). https://doi.org/10.1021/la9713816
  7. Bavykin, D. V., Friedrich, J. M. and Walsh, F. C., "Protonated Titanates and $TiO_2$ Nanostructured Materials: Synthesis, Properties, and Applications," Adv. Mater., 18, 2807-2824(2006). https://doi.org/10.1002/adma.200502696
  8. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., "Titania Nanotubes Prepared by Chemical Processing," Adv. Mater., 11, 1307-1311(1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  9. Chen, Q., Zhou, W., Du, G. and Peng, L.-M., "Titanate Nanotubes Made via Single Alkali Treatment," Adv. Mater., 14, 1208-1211(2002). https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
  10. Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X. and Zhang, Z., "Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotubed $H_2Ti_2O_4\;(OH)_2$," J. Mol. Catal. A: Chem., 217, 203-210(2004). https://doi.org/10.1016/j.molcata.2004.03.032
  11. Bavykin, D. V., Parmon, V. N., Lapkin, A. A. and Walsh, F. C., "The Effect of Hydrothermal Conditions on the Mesoporous Structure of $TiO_2$ Nanotubes," J. Mater. Chem., 14, 3370-3377(2004). https://doi.org/10.1039/b406378c
  12. Ma, R., Bando, Y. and Sasaki, T., "Direct Rolling Nanosheets into Nanotubes," J. Phys. Chem. B, 108, 2115-2119(2004). https://doi.org/10.1021/jp037200s
  13. Zhang, S., Peng, L.-M., Chen, Q., Du, G. H., Dawson, G. and Zhou, W. Z., "Formation Mechanism of $H_2Ti_3O_7$ Nanotubes," Phys. Rev. Lett., 91, 256103(2003). https://doi.org/10.1103/PhysRevLett.91.256103
  14. Bavykin, D. V. and Walsh, F. C., "Elongated Titanate Nanostructures and Their Applications," Eur. J. Inorg. Chem., 977-997(2009).
  15. Kavan, L., Gratzel, M., Rathousky, J. and Zukal, A., "Nanocrystalline $TiO_2$(Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties," J. Electrochem. Soc., 143, 394-400(1996). https://doi.org/10.1149/1.1836455
  16. Wagemaker, M., Borghols, W. J. H. and Mulder, F. M., "Large Impact of Particle Size on Insertion Reactions. A Case for Anatase $Li_xTiO_2$," J. Am. Chem. Soc., 129, 4323-4327(2009).
  17. Sudant, G., Baudrin, E., Larcher, D. and Tarascon, J.-M., "Electrochemical Lithium Reactivity with Nanotextured Anatase-Type $TiO_2$," J. Mater. Chem., 15, 1263-1269(2005).
  18. Hardwick, L. J., Holzapfel, M., Novak, P., Dupont, L. and Baudrin, E., "Electrochemical Lithium Insertion into Anatase-Type $TiO_2$: an In Situ Raman Microscopy Investigation," Electrochim. Acta, 52, 5357-5367(2007). https://doi.org/10.1016/j.electacta.2007.02.050
  19. Kavan, L., Rathousky, J., Gratzel, M., Shklover, V. and Zukal, A., "Surfactant-Templated $TiO_2$ (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures," J. Phys. Chem. B, 104, 12012-12020(2000). https://doi.org/10.1021/jp003609v
  20. Kavan, L., Kalbac, M., Zukalova, M., Exnar, I., Lorenzen, V., Nesper, R. and Gratzel, M., "Lithium Storage in Nanostructured $TiO_2$ Made by Hydrothermal Growth," Chem. Mater., 16, 477-485(2004). https://doi.org/10.1021/cm035046g
  21. Zukalova, M., Kalbac, M., Kavan, L., Exnar, I. and Gratzel, M., "Pseudocapacitive Lithium Storage in $TiO_2$(B)," Chem. Mater., 17, 1248-1255(2005). https://doi.org/10.1021/cm048249t
  22. Wagemaker, M., van de Krol, R., Kentgens, A. P. M., van Well, A. A. and Mulder, F. M., "Two Phase Morphology Limits Lithium Diffusion in $TiO_2$ (Anatase): a Li-7 MAS NMR Study," J. Am. Chem. Soc., 123, 11454-11461(2001). https://doi.org/10.1021/ja0161148
  23. Wagemaker, M., Kentgens, A. P. M. and Mulder, F. M., "Equilibrium Lithium Transport between Nanocrystalline Phases in Intercalated $TiO_2$ Anatase," Nature, 418, 397-399(2002). https://doi.org/10.1038/nature00901
  24. Wagemaker, M., Borghols, W. J. H., van Eck, E. R. H., Kentgens, A. P. M., Kearley, G. J. and Mulder, F. M., "The Influence of Size on Phase Morphology and Li-ion Mobility in Nanosized Lithiated Anatase $TiO_2$," Chem. Eur. J., 13, 2023-2028(2007). https://doi.org/10.1002/chem.200600803
  25. Kim, D. H., Yoon, J. H., Lee, K. S., Jung, Y.-H., Lee, B. R., Jang, J. S., Choi, D.-K., Kim, S.-J., Sun, Y.-K. and Lee, K. S., "Structural Characterization of Titanate Nanotubes for Lithium Storage," J. Nanosci. Nanotech., 8, 5022-5025(2008). https://doi.org/10.1166/jnn.2008.1006
  26. Oh, S. W., Park, S.-H. and Sun, Y.-K., "Hydrothermal Synthesis of Nano-Sized $TiO_2$ Powders for Lithium Secondary Anode Materials," J. Power Sources., 161, 1314-1318(2006). https://doi.org/10.1016/j.jpowsour.2006.05.050
  27. Baudrin, E., Cassaignon, S., Koelsch, M., Jolivet, J.-P., Dupont, L. and Tarascon, J.-M., "Structural Evolution during the Reaction of Li with Nano-Sized Rutile Type $TiO_2$ at Room Temperature," Electrochem. Commun., 9, 337-342(2007). https://doi.org/10.1016/j.elecom.2006.09.022
  28. Jiang, C., Honma, I., Kudo, T. and Zhou, H., "Nanocrystalline Rutile $TiO_2$ Electrode for High-Capacity and High-Rate Lithium Storage," Electrochem. Solid-State Lett., 10, A127-A129(2007). https://doi.org/10.1149/1.2712041
  29. Jiang, C., Wei, M., Qi, Z., Kudo, T., Honma, I. and Zhou, H., "Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase $TiO_2$ Electrode," J. Power Sources., 166, 239-243(2007). https://doi.org/10.1016/j.jpowsour.2007.01.004
  30. Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X. and Zhang, Z., "Study on Composition, Structure and Formation Process of Nanotube $Na_2Ti_2O_4(OH)_2$," Dalton Trans., 3898-3901(2003).
  31. Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F., Yang, Z. Y. and Wang, N., "Formation Mechanism of $TiO_2$ Nanotubes," Appl. Phys. Lett., 82, 281-283(2003). https://doi.org/10.1063/1.1537518
  32. Morgado, E. Jr., de Abreu, M. A. S., Pravia, O. R. C., Marinkovic, B. A., Jardim, P. M., Rizzo, F. C. and Araujo, A. S., "A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content," Solid State Sci., 8, 888-900(2006). https://doi.org/10.1016/j.solidstatesciences.2006.02.039
  33. Ma, R., Fukuda, K., Sasaki, T., Osada, M. and Bando, Y., "Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations," J. Phys. Chem. B, 109, 6210-6214(2005). https://doi.org/10.1021/jp044282r
  34. Kukovecz, A., Hodos, M., Horvath, E., Radnoczi, G., Konya, Z. and Kiricsi, I., "Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes," J. Phys. Chem. B, 109, 17781-17783(2005). https://doi.org/10.1021/jp054320m
  35. Cortes-Jacome, M. A., Ferrat-Torres, G., Ortiz, L. F. F., Angeles-Chavez, C., Lopez-Salinas, E., Escobar, J., Mosqueira, M. L. and Toledo-Antonio, J. A., "In Situ Thermo-Raman Study of Titanium Oxide Nanotubes," Catal. Today, 126, 248-255(2007). https://doi.org/10.1016/j.cattod.2007.02.012
  36. Zhu, K. R., Yuan, Y., Zhang, M. S., Hong, J. M., Deng, Y. and Yin, Z., "Structural Transformation from $NaHTi_3O_7$ Nanotube to $Na_2Ti_6O_{13}$ Nanorod," Solid State Commun., 144, 450-453(2007). https://doi.org/10.1016/j.ssc.2007.09.015
  37. Thorne, A., Kruth, A., Tunstall, D., Irvine, J. T. S. and Zhou, W., "Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity," J. Phys. Chem. B, 109, 5439-5444(2005). https://doi.org/10.1021/jp047113f
  38. Lan, Y., Gao, X., Zhu, H., Zheng, Z., Yan, T., Wu, F., Ringer, S. P. and Song, D., "Titanate Nanotubes and Nanorods Prepared from Rutile Powder," Adv. Funct. Mater., 15, 1310-1318(2005). https://doi.org/10.1002/adfm.200400353
  39. Gajovic, A., Friscic, I., Plodinec, M. and Ivekovic, D., "High Temperature Raman Spectroscopy of Titanate Nanotubes," J. Mol. Struct., 924-926, 183-191(2009). https://doi.org/10.1016/j.molstruc.2008.12.072
  40. Jung, H.-G., Oh, S. W., Ce, J., Jayaprakash, N. and Sun, Y.-K., "Mesoporous $TiO_2$ Nano Networks: Anode for High Power Lithium Battery Applications," Electrochem. Commun., 11, 756-759(2009). https://doi.org/10.1016/j.elecom.2009.01.030
  41. Wang, Z., Liu, S., Chen, G. and Xia, D., "Preparation and Li-Intercalation Properties of Mesoporous Anatase-$TiO_2$ Spheres," Electrochem. Solid-State Lett., 10, A77-A80(2007). https://doi.org/10.1149/1.2430567
  42. Lee, D.-H., Park, J.-G., Choi, K. J., Choi, H.-J. and Kim, D.-W., "Preparation of Brookite-Type $TiO_2$/Carbon Nanocomposite Electrodes for Application to Li Ion Batteries," Eur. J. Inorg. Chem., 878-882(2008).
  43. Inaba, M., Oba, Y., Niina, F., Murota, Y., Ogino, Y., Tasaka, A. and Hirota, K., "$TiO_2$(B) as a Promising High Potential Negative Electrode for Large-Size Lithium-ion Batteries," J. Power Sources., 189, 580-584(2009). https://doi.org/10.1016/j.jpowsour.2008.10.001
  44. Zhou, Y., Cao, L., Zhang, F., He, B. and Li, H., "Lithium Insertion into $TiO_2$ Nanotube Prepared by the Hydrothermal Process," J. Electrochem. Soc., 150, A1246-A1249(2003). https://doi.org/10.1149/1.1597883
  45. Gao, X. P., Lan, Y., Zhu, H. Y., Liu, J. W., Ge, Y. P., Wu, F. and Song, D. Y., "Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes," Electrochem. Solid-State Lett., 8, A26-A29(2005). https://doi.org/10.1149/1.1833632
  46. Li, J., Tang, Z. and Zhang, Z., "Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes," Electrochem. Solid-State Lett., 8, A316-A319(2005). https://doi.org/10.1149/1.1904465
  47. Xu, J., Jia, C., Cao, B. and Zhang, W. F., "Electrochemical Properties of Anatase $TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," Electrochim. Acta, 52, 8044-8047(2007). https://doi.org/10.1016/j.electacta.2007.06.077
  48. Kim, J. and Cho, J., "Rate Characteristics of Anatase $TiO_2$ Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature," J. Electrochem. Soc., 154, A542-A546(2007). https://doi.org/10.1149/1.2724756
  49. Das, K., Panda, S. K. and Chaudhuri, S., "Solvent-Controlled Synthesis of $TiO_2$ 1D Nanostructures: Growth Mechanism and Characterization," J. Cryst. Growth., 310, 3792-3799(2008). https://doi.org/10.1016/j.jcrysgro.2008.05.039
  50. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "$TiO_2$-B Nanowires," Angew. Chem. Intern. Ed., 43, 2286-2288(2004). https://doi.org/10.1002/anie.200353571
  51. Armstrong, A. R., Armstrong, G., Canales, J., Garcia, R. and Bruce, P. G., "Lithium-ion Intercalation into $TiO_2$-B Nanowires," Adv. Mater., 17, 862-865(2005). https://doi.org/10.1002/adma.200400795
  52. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P. G., "$TiO_2$-B Nanowires as Negative Electrodes for Rechargeable Lithium Batteries," J. Power Sources, 146, 501-506(2005). https://doi.org/10.1016/j.jpowsour.2005.03.057
  53. Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. and Scrosati, B., "$TiO_2$(B) Nanowires as an Improved Anode Material for Lithium-ion Batteries Containing $LiFePO_4$ or $LiNi_{0.5}Mn_{1.5}O_4$ Cahodes and a Polymer Electrolyte," Adv. Mater., 18, 2597-2600(2006). https://doi.org/10.1002/adma.200601232
  54. Wilkening, M., Lyness, C., Armstrong, A. R. and Bruce, P. G. "Diffusion in Confined Dimensions: $Li^+$ Transport in Mixed Conducting $TiO_2$-B Nanowires," J. Phys. Chem. C, 113, 4741-4744(2009). https://doi.org/10.1021/jp8107792
  55. Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "Nanotubes with the $TiO_2$-B Structure," Chem. Commun., 2454-2456(2005).
  56. Armstrong, G., Armstrong, A. R., Canales, J. and Bruce, P. G., "$TiO_2$(B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries," Electrochem. Solid-State Lett., 9, A139-A143(2006). https://doi.org/10.1149/1.2162327
  57. Tsai, M.-C., Chang, J.-C., Sheu, H.-S., Chiu, H.-T. and Lee, C.-Y., "Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process," Chem. Mater., 21, 499-505(2009). https://doi.org/10.1021/cm802327z
  58. Tang, W., "Preparation of Anatase-Type $TiO_2$ Nanocrystal/Acetylene Black Composites by a Dry Process, and Their Electrochemical Lithium Insertion," J. Mater. Chem., 14, 3457-3461(2004). https://doi.org/10.1039/b405249h
  59. Yoon, S., Ka, B. H., Lee, C., Park, M. and Oh, S. M., "Preparation of Nanotube $TiO_2$-carbon Composite and Its Anode Performance in Lithium-ion Batteries," Electrochem. Solid-State Lett., 12, A28-A32(2009). https://doi.org/10.1149/1.3035981
  60. Xu, J., Wang, Y., Li, Z. and Zhang, W. F., "Preparation and Electrochemical Properties of Carbon-Doped $TiO_2$ Nanotubes as an Anode Material for Lithium-ion Batteries," J. Power Sources, 175, 903-908(2008). https://doi.org/10.1016/j.jpowsour.2007.10.014
  61. Wang, Q., Wen, Z. and Li, J., "A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a $TiO_2$-B Nanowire Anode," Adv. Func. Mater., 16, 2141-2146(2006). https://doi.org/10.1002/adfm.200500937
  62. Wang, Q., Wen, Z. and Li, J., "Carbon Nanotube/$TiO_2$ Nanotubes Hybrid Supercapacitor," J. Nanosci. Nanotech. 7, 3328-3331(2007). https://doi.org/10.1166/jnn.2007.679
  63. Brousse, T., Marchand, R., Taberna, P.-L. and Simon, P., "$TiO_2$(B)/Activated Carbon Non-Aqueous Hybrid System for Energy Storage," J. Power Sources, 158, 571-577(2006). https://doi.org/10.1016/j.jpowsour.2005.09.020
  64. Wei, M., Qi, Z., Ichihara, M., Honma, I. and Zhou, H., "Ultralong Single-Crystal $TiO_2$-B Nanowires: Synthesis and Electrochemical Measurements," Chem. Phys. Lett., 424, 316-320(2006). https://doi.org/10.1016/j.cplett.2006.04.066
  65. Wang, Q., Wen, Z. and Li, J., "Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional $TiO_2$ Nanoparticles," Inorg. Chem., 45, 6944-6949(2006). https://doi.org/10.1021/ic060477x
  66. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P. and Zhu, H. Y., "Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods," J. Phys. Chem. C, 111, 6143-6148(2007). https://doi.org/10.1021/jp0702595
  67. Wang, Y., Wu, M. and Zhang, W. F., "Preparation and Electrochemical Characterization of $TiO_2$ Nanowires as an Electrode Material for Lithium-ion Batteries," Electrochim. Acta, 53, 7863-7868(2008). https://doi.org/10.1016/j.electacta.2008.05.068