Microfluidic System for the Measurement of Cupric Ion Concentration using Bilayer Lipid Membrane on Silver Surface

은 표면의 이중층 지질막에 의한 구리 이온 농도 측정용 마이크로플루이딕 시스템

  • Jeong, Beum Seung (Department of Chemical and Biomolecular Engineering and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Kim, Do Hyun (Department of Chemical and Biomolecular Engineering and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology(KAIST))
  • 정범승 (한국과학기술원 생명화학공학과 초미세 화학공정시스템연구센터) ;
  • 김도현 (한국과학기술원 생명화학공학과 초미세 화학공정시스템연구센터)
  • Received : 2009.09.22
  • Accepted : 2009.10.28
  • Published : 2010.02.28

Abstract

A microfluidic system has been developed using biomaterial for the measurement of cupric ion concentration. The cell-membrane-mimicking bilayer lipid membrane(BLM)-coated silver electrode was used for the sensing of cupric ion concentration. The silver-supported BLM could increase its stability. A silver-supported bilayer lipid membrane(s-BLM) was easily obtained using its self-assembling characteristics by immersing silver wire into lipid(phosphatidylcholine; PC) solution and then dipping into aqueous KCl solution. These s-BLMs were used to determine the relationship between $Cu^{2+}$ concentration and current crossing s-BLM. Their relationship showed high linearity and reproducibility. The calibration curve was constructed to express the relationship between $Cu^{2+}$ concentration and current in the $Cu^{2+}$ concentration range of 10 and $130{\mu}M$. This calibration curve was used to measure $Cu^{2+}$ concentration in an unknown sample. Microfluidic system with s-BLM was made of PDMS(polydimethyl siloxane) using typical soft photolithography and molding technique. This integrated system has various functions such as activation of the silver surface without cutting silver wire, coating of BLM on silver surface, injection of KCl buffer solution, injection of $Cu^{2+}$ sample and measurement of $Cu^{2+}$ concentration in the sample.

구리 이온 농도를 측정하기 위하여 생체재료를 사용하여 마이크로플루이딕 시스템을 제작하였다. 은 전극에 세포막을 모방한 이중층 지질막(bilayer lipid membrane; BLM)을 피복하여 제2 구리 이온 농도를 감지하도록 하였다. 은 전극에 지지된 BLM은 그 안정성이 증대되었다. 은에 지지된 이중층 지질막(s-BLM)은 은 전선을 지질 (phosphatidylcholine; PC) 용액에 담갔다가 KCl 용액에 담글 때 자기조립 특성에 의하여 용이하게 형성할 수 있다. 이 지지된 이중층 지질막(s-BLM)은 $Cu^{2+}$의 농도와 s-BLM을 통과하는 전류 간의 상관 관계를 결정하기 위하여 사용되었다. 얻어진 상관관계는 선형을 보였으며 높은 재현성을 가졌다. $Cu^{2+}$ 농도가 $10{\sim}130{\mu}M$인 범위에서 $Cu^{2+}$ 농도와 전류의 상관관계를 나타내기 위하여 보정 곡선을 구축하였다. 이 보정 곡선을 미지 시료의 $Cu^{2+}$ 농도 측정에 사용하였다. 지지된 이중층 지질막이 구비된 마이크로플루이딕 시스템은 PDMS(polydimethyl siloxane)를 사용하여 전형적인 연질 포토리소그라피와 몰딩 기법으로 제작하였다. 집적된 마이크로플루이딕 시스템은 은 전선을 절단하지 않고도 은 표면을 활성화시키는 기능, 은 표면에 이중층 지질막을 피복하는 기능, KCl 완충 용액을 주입하는 기능, $Cu^{2+}$를 포함한 시료를 주입하는 기능, 시료 중의 $Cu^{2+}$ 농도를 측정하는 기능 등 다중 기능을 가지도록 하였다.

Keywords

References

  1. Rengaraj, S., Kim, Y., Joo, C. K. and Choi, K. and Yi, J. "Batch Adsorptive Removal of Copper Ions in Aqueous Solutions by Ion Exchange Resins: 1200H and IRN97H," Korean J. Chem. Eng., 21, 187(2004). https://doi.org/10.1007/BF02705397
  2. Prakorn, R., Kwanta, N. and Ura, P., "One-through Selective Separation of Copper, Chromium and Zinc Ions by Hollow Fiber Supported Liquid Membrane," Korean J. Chem. Eng., 21, 1212 (2004). https://doi.org/10.1007/BF02719496
  3. Somasundrum, M. and Bannister, J. V., "Amperometric Determination of Copper Using Screen-printed Electrodes," Sens. Actuators B-Chem., 15, 203(1993). https://doi.org/10.1016/0925-4005(93)85052-C
  4. Bychkov, E., Bruns, M., Klewe-Nebenius, H., Pfenning, G., Raptis, K., Hoffmann, W. and Ache, H. J., "Copper(II)-ion response of Cu-As-Se Thin-film Sensors in a Flow-through Microcell," Sens. Actuators B-Chem., 27, 384(1995). https://doi.org/10.1016/0925-4005(94)01623-P
  5. Ali, M. B., Lemiti, M., Jaffrezic-Renault, N., Martelet, C., Chovelon, M. and Ben Ouada, H., "Thin Film Microfabrication of Gold Microelectrodes Functionalized with Thiacalix Arene Layer: Applications to Copper Ion Sensor," Thin Solid Films, 383, 292(2001). https://doi.org/10.1016/S0040-6090(00)01571-6
  6. Pandey, P. C., "Copper (II) Ion Sensor Based on Electropolymerized Undoped-polyindole Modified Electrode," Sens. Actuators B-Chem., 54, 210(1999). https://doi.org/10.1016/S0925-4005(99)00011-8
  7. Prakash, R., Srivastava, R. C. and Pandey, P. C., "Copper(II) Ion Sensor Based on Electropolymerized Undoped Conducting Polymers," J. Solid State Electrochem. Curr. Res. Dev. Sci. Technol., 6, 203(2002). https://doi.org/10.1007/s100080100213
  8. Barna, K. and Nagy, G., "Opto-electrochemical Planar Waveguide Sensor for Copper (II) ion," J. Biochem. Biophys. Methods., 53, 177(2002). https://doi.org/10.1016/S0165-022X(02)00106-9
  9. Dimitrios, P. N. and Krull, U. J., "Direct Electrochemical Sensing of Insecticides by Bilayer Lipid Membranes," Anal. Chim. Acta, 288, 187(1994). https://doi.org/10.1016/0003-2670(94)80132-0
  10. Siontorou, C. G., Dimitrios, N. P., Krull, U. J. and Chiang, K. L., "Triazine Herbicide Minisensor Based on Surface-stabilized Bilayer Lipid Membranes," Anal. Chem., 69, 3109(1997). https://doi.org/10.1021/ac970113+
  11. Krull, U. J., Seethaler, S. L., Brennan, J. D. and Nikolelis, D. P., "Bilayer Lipid Membranes as Electrochemical Switches in Reactions Involving Alteration of Surface Charge," Thin Solid Films, 244, 917(1994). https://doi.org/10.1016/0040-6090(94)90600-9
  12. Doe, H., "Selective Ion Transfer of Alkali and Alkaline Earth Metal Ions Facilitated by Naphtho-15-Crown-5 Across Liquid-Liquid Interfaces and a Bilayer Lipid Membrane," Surf. Sci., 95, 629(2001).
  13. Becucci, L., Moncelli, M. R. and Guidelli, R., "Ion Carriers and Channels in Metal-Supported Lipid Bilayers as Probes of Transmembrane and Dipole Potentials," Langmuir: the ACS Journal of Surfaces and Colloids, 19, 3386(2003). https://doi.org/10.1021/la0266177
  14. Tien, H. T. and Ottova, A. L., "From Self-assembled Bilayer Lipid Membranes (BLMs) to Supported BLMs on Metal and Gel Substrates to Practical Applications," Colloids Surf. A: Physicochem. Eng. Asp., 149, 217(1999). https://doi.org/10.1016/S0927-7757(98)00330-6
  15. Siontorou, C. G., Nikolelis, D. P., Miernik, A. and Krull, U. J., "Rapid Methods for Detection of Aflatoxin M1 Based on Electrochemical Transduction by Self-assembled Metal-supported Bilayer Lipid Membranes (s-BLMs) and on Interferences with Transduction of DNA Hybridization," Electrochim Acta, 43, 3611 (1998). https://doi.org/10.1016/S0013-4686(98)00108-X
  16. Katrivanos, P. L., Purnell, A. J., Aleksandridis, A. A., Siontorou, C. G. and White, C., "An Integrated System Connected to Biosensoring Systems Based on Self-assembled Metal-supported Bilayer Lipid Membranes," Laboratory Robotics and Automation, 10, 239(1998). https://doi.org/10.1002/(SICI)1098-2728(1998)10:4<239::AID-LRA7>3.0.CO;2-5
  17. Whitesides, X. Y. and George M., "Soft Lithography," Annu. Rev. Mater. Sci., 28, 153(1998). https://doi.org/10.1146/annurev.matsci.28.1.153
  18. Malaquin, L., Carcenac, F., Vieu, C. and Mauzac, M., "Using Polydimethylsiloxane as a Thermocurable Resist for a Soft Imprint Lithography Process," Microelectron. Eng., 61, 379(2002). https://doi.org/10.1016/S0167-9317(02)00573-7
  19. Ottova, A. L. and Tien, H. T., "Self-assembled Bilayer Lipid Membranes: from Mimicking Biomembranes to Practical Applications," Bioelectrochem. Bioenergetics, 42, 141(1997). https://doi.org/10.1016/S0302-4598(96)05098-2