CO2 Separation Techniques Using Ionic Liquids

이온성 액체를 이용한 CO2 분리기술

  • Cho, Min Ho (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyunjoo (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Honggon (Clean Energy Research Center, Korea Institute of Science and Technology)
  • 조민호 (한국과학기술연구원 청정에너지연구센터) ;
  • 이현주 (한국과학기술연구원 청정에너지연구센터) ;
  • 김홍곤 (한국과학기술연구원 청정에너지연구센터)
  • Received : 2009.10.08
  • Accepted : 2009.11.26
  • Published : 2010.02.28

Abstract

Since carbon dioxide, $CO_2$, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted $CO_2$ absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new $CO_2$ capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb $CO_2$ reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the $CO_2$ solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as $CO_2$ separating media.

이산화탄소($CO_2$)가 지구온난화의 주요 원인으로 밝혀지면서 $CO_2$를 분리, 회수, 저장하는 기술의 개발과 적용에 대한 관심이 높아지고 있다. 아민화합물은 대표적인 $CO_2$ 흡수제이지만 재생 시 많은 에너지가 필요하고 흡수제가 열분해되며 증발하여 소실되는 단점이 있다. 이러한 단점을 개선할 수 있는 흡수제로 이온성 액체가 개발되고 있다. 이온성 액체는 양이온, 음이온으로 구성된 염이지만 상온에서도 액체상태를 유지하는 물질로서, 높은 열적 안정성, 낮은 휘발성, 특정 기체에 대한 선택적 흡수능력 등의 특성을 보인다. 여기서는 $CO_2$ 흡수능력이 큰 것으로 보고된 이온성 액체들을 바탕으로 이온성 액체의 구조와 온도, 압력, 수분 등 $CO_2$ 흡수량에 영향을 미치는 요인들을 비교하고, $CO_2$ 분리제로서 이온성 액체의 활용 가능성을 알아보았다.

Keywords

References

  1. Baltus, R. E., Counce, R. M., Culbertson, B. H., Luo, H., DePaoli, D. W., Dai, S. and Duckworth, D. C., "Examination of the Potential of Ionic Liquids for Gas Separation," Sep. Sci. Technol., 40, 525-541(2005). https://doi.org/10.1081/SS-200042513
  2. Alejandre, J., Rivera, J. L., Mora, M. A. and Garza, V. D. L., "Force Field of Monoethanolamine," J. Phys. Chem. B, 104, 1332-1337(2000). https://doi.org/10.1021/jp993101w
  3. Gutowski, K. E. and Maginn, E. J., "Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with $CO_2$ from Molecular Simulation," J. Am. Chem. Soc., 130, 14690-14704(2008). https://doi.org/10.1021/ja804654b
  4. Lee, H., Kim, D. S., Kim, H. and Kim, H. S., "Ionic Liquids as a Carbon Dioxide Capturing Agent," KIC News, 12, 1-8(2009).
  5. Seddon, K. R., Stark, A. and Torres, M.-S., "Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids," Pure Appl. Chem., 72, 2275-2287(2000). https://doi.org/10.1351/pac200072122275
  6. Zhang, W., Li, Z., Han, B., Ha, S., Song, J., Xie, Y. and Zhou, X., "Switching the Basicity of Ionic Liquids by $CO_2$," Green Chem., 10, 1142-1145(2009).
  7. Sen, M. and Paolucci, S., "Using Carbon Dioxide and Ionic Liquids for Absorption Refrigeration," IIR Gustav Lorentzen Conference on Natural Working Fluids, 7th, Trondheim, Norway, May 28-31(2006).
  8. Blanchard, L. A., Hancu, D., Beckmanm, E. J. and Brennecke, J. F., "Green Processing Using Ionic Liquids and $CO_2$," Nature, 399, 28-29(1999).
  9. Anderson, J. L., Dixon, J. K. and Brennecke, J. F., "Solubility of $CO_2,\;CH_4,\;C_2H_6,\;C_2H_4,\;O_2,\;and\;N_2$ in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids," Acc. Chem. Roc., 40, 1208-1216(2007). https://doi.org/10.1021/ar7001649
  10. Zhang, X., Liu, Z. and Wang, W., "Screening of Ionic Liquids to Capture $CO_2$ by COSMO-RS and Experiments," AIChE Journal, 54, 2717-2728(2008). https://doi.org/10.1002/aic.11573
  11. Shiflett, M. B. and Yokozeki, A., "Solubility of $CO_2$ in Room Temperature Ionic Liquids $[hmim][Tf_2N]$," J. Phys. Chem. B, 111, 2070-2074(2007). https://doi.org/10.1021/jp067627+
  12. Aki, S. N. V. K., Mellein, B. R., Saurer, E. M. and Brennecke, J. F., "High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium- Based Ionic Liquids," J. Phys. Chem. B, 108, 20355-20365(2004). https://doi.org/10.1021/jp046895+
  13. Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F. and Maginn, E. J., "Why Is $CO_2$ So Soluble in Imidazolium-Based Ionic Liquids?," J. Am. Chem. Soc., 126, 5300-5308(2004). https://doi.org/10.1021/ja039615x
  14. Muldoon, M. J., Aki, S. N. V. K., Anderson, J. L., Dixon, J. K. and Brennecke, J. F., "Improving Carbon Dioxide Solubility in Ionic Liquids," J. Phys. Chem. B, 111, 9001-9009(2007). https://doi.org/10.1021/jp071897q
  15. Yuan, X., Zhang, S., Liu, J. and Lu, X., "Solubilities of $CO_2$ in Hydroxyl Ammonium Ionic Liquids at Elevated Pressures," Fluid Phase Equilibria, 257, 195-200(2007). https://doi.org/10.1016/j.fluid.2007.01.031
  16. Jacquemin, J., Husson, P. and Majer, V., "Influence of the Cation on the Solubility of $CO_2\;and\;H_2$ in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion," J. Solution Chem., 36, 967-979(2007). https://doi.org/10.1007/s10953-007-9159-9
  17. Tang, J., Tang, H., Sun, W., Radosz, M. and Shen, Y., "Poly(ionic liquid)s as New Materials for $CO_2$ Absorption," J. Polym. Sci. Part A: Poly. Chem., 43, 5477-5489(2005). https://doi.org/10.1002/pola.21031
  18. Baltus, R. E., Culbertson, B. H., Dai, S., Luo, H. and DePaoli, D. W., "Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance," J. Phys, Chem. B, 108, 721-727(2004). https://doi.org/10.1021/jp036051a
  19. Scovazzo, P., Camper, D., Kieft, J., Poshusta, J., Koval, C. and Noble, R., "Regular Solution Theory and $CO_2$ Gas Solubility in Room-Temperature Ionic Liquids," Ind. Eng. Chem. Res., 43, 6855-6860(2004). https://doi.org/10.1021/ie049601f
  20. Fu, D., Sun, X., Pu, J. and Zhao, S., "Effect of Water Content on the Solubility of $CO_2$ in the Ionic Liquid $[bmim][PF_6]$," J. Chem. Eng. Data, 51, 371-375(2006).
  21. Blanchard, L. A., Gu, Z. and Brennecke, J. F., "High-Pressure Phase Behavior of Ionic $Liquid/CO_2$ Systems," J. Phys. Chem. B, 105, 2437-2444(2001). https://doi.org/10.1021/jp003309d
  22. Toews, K. L., Schroll, R. M., Wai, C. M. and Smart, N. G., "pHDefining Equilibrium between Water and Supercritical $CO_2$: Influence on SFE of Organics and Metal Chelates," Anal. Chem., 67, 4040-4043(1995). https://doi.org/10.1021/ac00118a002
  23. Visser, A. E., Swatloski, R. P., Reichert, W. M., Griffin, S. T. and Rogers, R. D., "Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids," Ind. Eng. Chem. Res., 39, 3596-3604(2000). https://doi.org/10.1021/ie000426m
  24. Anthony, J. L., Anderson, J. L., Marginn, E. J. and Brennecke, J. F., "Anion Effects on Gas Solubility in Ionic Liquids," J. Phys. Chem. B, 109, 6366-6374(2005). https://doi.org/10.1021/jp046404l
  25. Shariati, A. and Peters, C. J., "High-Pressure Phase Behavior of Systems with Ionic Liquids: Part II. The Binary System of Carbon Dioxide+1-Ethyl-3-methylimidazolium Hexafluorophosphate," J. Supercrit. Fluids, 29, 43-48(2004). https://doi.org/10.1016/S0896-8446(03)00032-9
  26. Shariati, A. and Peters, C. J., "High-Pressure Phase Behavior of Systems with Ionic Liquids: Part III. The Binary System of Carbon Dioxide+1-Hexyl-3-methylimidazolium Hexafluorophosphate," J. Supercrit. Fluids, 30, 139-144(2004). https://doi.org/10.1016/j.supflu.2003.09.001
  27. Beckman, E. J., "A Challenge for Green Chemistry: Designing Molecules that Readily Dissolve in Carbon Dioxide," Chem. Commun., 17, 1885-1888(2004).
  28. Kazarian, S. G., Briscoe, B. J. and Welton, T., "Combining Ionic Liquids and Supercritical Fluids: in situ ATR-IR Study of $CO_2$ Dissolved in Two Ionic Liquids at High Pressures," Chem. Commun., 2047-2048(2000).
  29. Tang, J., Sun, W., Tang, H., Radosz, M. and Shen, Y., "Enhanced $CO_2$ Absorption of Poly(ionic liquid)s," Macromolecules, 38, 2037-2039(2005). https://doi.org/10.1021/ma047574z
  30. Bates, E. D., Mayton, R. D., Ntai, I. and Davis, J. H. Jr. "$CO_2$ Capture by a Task-Specific Ionic Liquid," J. Am. Chem. Soc., 124, 926-927(2002). https://doi.org/10.1021/ja017593d
  31. Zhang, J. M., Zhang, S. J., Dong, K., Zhang, Y. Q., Shen, Y. Q. and Lv, X. M., "Supported Absorption of $CO_2$ by Tetrabutylphosphonium Amino Acid Ionic Liquids," Chem. Eur. J., 12, 4021-4026(2006). https://doi.org/10.1002/chem.200501015
  32. Jiang, Y. Y., Wang, G. N., Zhou, Z., Wu, Y. T., Geng, J. and Zhang, Z. B., "Tetraalkylammonium Amino Acids as Functionalized Ionic Liquids of Low Viscosity," Chem. Commun., 505-507(2008).
  33. Zhang, Y., Zhang, S., Lu, X., Zhou, Q., Fan, W. and Zhang, X., "Dual Amino-Functionalised Phosphonium Ionic Liquids for $CO_2$ Capture," Chem. Eur. J., 15, 3003-3011(2009). https://doi.org/10.1002/chem.200801184
  34. Shirota, H. and Castner, E. W. Jr., "Why Are Viscosities Lower for Ionic Liquids with $−CH_2Si(CH_3)_3\;vs\;−CH_2C(CH_3)_3$ Substitutions on the Imidazolium Cations?," J. Phys. Chem. B, 109, 21576-21585 (2005). https://doi.org/10.1021/jp053930j