Recent Developments and Challenging issues of Solid Catalysts for Biodiesel Production

바이오디젤 생산용 고체 촉매의 개발 동향 및 과제

  • Lee, Jin-Suk (Bio-energy Research Center, Korea Institute of Energy Research) ;
  • Park, Soon-Chul (Bio-energy Research Center, Korea Institute of Energy Research)
  • 이진석 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 박순철 (한국에너지기술연구원 바이오에너지연구센터)
  • Received : 2009.08.01
  • Accepted : 2009.11.25
  • Published : 2010.02.28

Abstract

Intensive works have been carried out to develop more efficient solid catalysts for biodiesel production from various feedstocks including refined oils and waste fats. Among many catalysts, metal oxides and ion exchange resins are the most intensively studied ones. With regard to metal oxide catalysts, major research activities have focused on the identification of the active compounds and their immobilizing methods on the supports. As metal oxide catalysts have strong thermal stability, they may be used in simultaneous transesterification and esterification of waste fats. However, ion exchange resin catalysts were mainly applied in the esterification of the free fatty acids in waste fats because of their lower thermal stability. For both solid catalysts, further works are needed to make them to be used in commercial process. Especially fast deactivation of the solid catalyst would be the most challenging problem.

다양한 원료유로부터 바이오디젤을 효율적으로 생산할 수 있는 고체촉매 개발을 위한 연구가 활발하게 진행되고 있다. 다양한 고체촉매 중 금속산화물계 촉매와 이온교환수지 촉매가 특히 유망한 것으로 평가되고 있다. 금속 산화물계 촉매의 경우 고체 촉매의 활성을 높이기 위해 반응 활성이 높은 촉매성분과 지지체의 탐색 및 촉매 성분을 지지체에 안정적으로 담지할 수 있는 기술이 주로 연구되고 있다. 특히 금속 산화물 촉매는 열적 안정성이 우수하여 고온이 요구되는 폐유지의 전이에스테르화- 에스테르화 동시 반응 시스템에서 활용성이 높을 것으로 평가된다. 이온교환수지 촉매는 반응 온도가 제한되므로 유리지방산의 에스테르화 반응 연구에 주로 적용되고 있다. 두 가지 고체촉매 모두 상용화 공정에 적용을 위해서는 보다 많은 연구가 진행되어야 한다. 특히 고체 촉매의 재사용에 따른 활성 저하 문제 해결이 주 과제가 될 것으로 보인다.

Keywords

References

  1. Lee, J. S., "Biodiesel Production by Chemical Catalysts," NICE, 25(6), 613-617(2007).
  2. Choi, J. D., Kim, D. K., Park, J. Y., Rhee, Y. W. and Lee, J. S., "Optimization of Esterification of Jatropha oil by Amberlyst-15 and Biodiesel Production," Korean Chem. Eng. Res., 46, 194-199 (2008).
  3. West, A. H., Posarac, D. and Ellis, N., "Assesment of Four Biodiesel Production Process Using HYSYS Plant," Bioresour. Technol. 99, 6587-6601(2008). https://doi.org/10.1016/j.biortech.2007.11.046
  4. Marchetti, J. M. and Errazu, A. F., "Technoeconomic Study of Supercritical Biodiesel Production Plant," Energy Convers. Mgmt., 49, 2160-2164(2008). https://doi.org/10.1016/j.enconman.2008.02.002
  5. Sakai, T., Kawashima, A. and Koshikawa, T., "Economic Assessment of Batch Biodiesel Production Process Using Homogeneous and Heterogeneous Alkali Catalysts," Bioresour. Technol. 100, 3268-3276(2009). https://doi.org/10.1016/j.biortech.2009.02.010
  6. Bloch, M., Bournay, I., Casanave, D., Chodorge, J. A., Coupard, V., Hillion, G. and Lorne, D., "Fatty Acid Esters in Europe: Market Trends and Technological Perspectives," Oil Gas Sci Technol., 63, 405-417(2008). https://doi.org/10.2516/ogst:2008034
  7. Zabeti, M., Daud, W. M. A. W. and Aroua, M. K., "Activity of Solid Catalysts for Biodiesel Production: A Review," Fuel Proces. Technol., 90, 770-777(2009). https://doi.org/10.1016/j.fuproc.2009.03.010
  8. Liu, X., He, H., Wang, Y., Zhu, S. and Piao, X., "Transesterification of Soybean Oil to Biodiesel Using CaO as a Solid Base Catalyst," Fuel, 87, 216-221(2008). https://doi.org/10.1016/j.fuel.2007.04.013
  9. Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. and Hidaka, J., "Calcium Oxide as a Solid Base Catalyst for Transesterification of Soybean Oil and its Application to Biodiesel Production," Fuel, 87, 2798-2806(2008). https://doi.org/10.1016/j.fuel.2007.10.019
  10. Kouzu, M., Yamanaka, S., Hidaka, J. and Tsunomori, M., "Heterogeneous Catalysis of Calcium Oxide Used for Transesterification of Soybean Oil with Refluxing Methanol," Appl. Catal. A: General, 355, 94-99(2009). https://doi.org/10.1016/j.apcata.2008.12.003
  11. Granados, M. L., Alonso, D. M., Sadaba, I., Mariscal, R. and Ocon, P., "Leaching and Homogeneous Contribution in Liquid Phase Reaction Catalysed by Solids: The Case of Triglycerides Methanolysis Using CaO," Appl. Catal. B: Environ., 89, 265-272 (2009). https://doi.org/10.1016/j.apcatb.2009.02.014
  12. Kawashima, A., Matsubara, K. and Honda, K., "Acceleration of Catalytic Activity of Calcium Oxide for Biodiesel Production," Bioresour. Technol., 100, 696-700(2009). https://doi.org/10.1016/j.biortech.2008.06.049
  13. Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaria, J. and Fierro, J. L. G., "Biodiesel from Sunflower Oil by Using Activated Calcium Oxide," Appl. Catal. B: Environ., 73, 317-326(2007). https://doi.org/10.1016/j.apcatb.2006.12.017
  14. Yan, S., Kim, M., Salley, S. O. and Ng, S., "Oil Transesterification Over Calcium Oxides Modified with Lanthanum," Appl. Catal. A: General, 360, 163-170(2009). https://doi.org/10.1016/j.apcata.2009.03.015
  15. Nagamcharussrivichai, C., Totarat, P. and Bunyakiat, K., "Ca and Zn Mixed Oxide as a Heterogeneous Base Catalyst for Transesterification of Palm Kernel Oil," Appl. Catal. A: General, 341, 77-85(2008). https://doi.org/10.1016/j.apcata.2008.02.020
  16. Umdu, S. E., Tuncer, M. and Seker, E., "Transesterification of Nannochloropsis oculata Microalga's Lipid to Biodiesel on $Al_2O_3$ Supported CaO and MgO Catalysts," Bioresour. Technol., 100, 2828-2831(2009). https://doi.org/10.1016/j.biortech.2008.12.027
  17. Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. G., Lee, J. S. and Lee, K. Y., "Transesterification of Vegetable Oil to Biodiesel Using Heterogeneous Base Catalyst," Catal. Today, 153, 201-204(2004).
  18. Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P., Parvulescu, V. I. and Hardacre, C., "Transesterification of Vegetable Oils on Basic Large Mesoporous Alumina Supported Alkaline Fluorides-Evidences of the Nature of the Active Site and Catalytic Performances," J. Catal., 263, 56-66(2009). https://doi.org/10.1016/j.jcat.2009.01.012
  19. Vicente, G., Coteron, A., Martinez, M. and Aracil, J., "Application of the Factorial Design of Experiments and Response Surface Methodology to Optimize Biodiesel Production," Ind. Crops. Prod., 8, 29-35(1998). https://doi.org/10.1016/S0926-6690(97)10003-6
  20. Reis, S. C. M., Lachter, E. R., Nascimento, R. S. V., Rodrigues Jr, J. A. and Reid, M. G., "Transesterification of Brazilian Vegetable Oils with Methanol Over Ion-exchange Resins," JAOCS, 82, 661-665(2005). https://doi.org/10.1007/s11746-005-1125-y
  21. Kitakawa, N. S., Honda, H., Kuribayashi, H., Toda, T., Fukumur, T. and Yonemoto, T., "Biodiesel Production Using Anionic Ion-exchange Resin as Heterogeneous Catalyst," Bioresour. Technol., 98, 416-421(2007). https://doi.org/10.1016/j.biortech.2005.12.010
  22. Mazzoti, M., Neri, B., Gelosa, D., Kruglov, A. and Morbidelli, M., "Kinetics of Liquid-phase Esterification Catalyzed by Acidic Resins," Ind. Eng. Chem. Res., 36, 3-10(1997). https://doi.org/10.1021/ie960450t
  23. Furuta, S., Matsuhashi, H. and Arata, K., "Biodiesel Fuel Production with Solid Superacid Catalyst in Fixed Bed Reactor Under Atmospheric Pressure," Catalysis Commun., 5, 721-723(2004). https://doi.org/10.1016/j.catcom.2004.09.001
  24. Pesaresi, L., Brown, D. R., Lee, A. F., Montero, J. M., Williams, H. and Wilson, K., "Cs-doped $H_4SiW_2O_{40}$ Catalysts for Biodiesel Applications," Appl. Catal. A: General, 300, 50-58(2009).
  25. Katada, N., Hatanaka, T., Ota, M., Yamada, K., Okumura, K. and Niwa, M., "Biodiesel Production Using Heteropoly Acid-derived Solid Acid Catalyst $H_4PNbW_{11}O_{40}/WO_3-Nb_2O_5$," Appl. Catal. A: General, 363, 164-168(2009). https://doi.org/10.1016/j.apcata.2009.05.012
  26. Park, Y. M., Lee, D. W., Kim, D. K., Lee, J. S. and Lee, K. Y., "The Heterogeneous Catalyst System for the Continuous Conversion of Free Fatty Acids in Used Vegetable Oils for the Production of Biodiesel," Catal. Today, 131, 238-243(2008). https://doi.org/10.1016/j.cattod.2007.10.052
  27. Ozbay, N., Oktar, N. and Tapan, N. A., "Esterification of Free Fatty Acids in Waste Cooking Oils (WCO): Role of Ion-exchange Resins," Fuel, 87, 1789-1798(2008). https://doi.org/10.1016/j.fuel.2007.12.010
  28. Carmo Jr, A. C., Souza, L. K. C., Costa, C. E. F., Longo, E., Zamian, J. R. and Filho, G. N. R., "Production of Biodiesel by Esterification of Palmitic Acid over Mesoporous Aluminosilicate Al-MCM-41," Fuel, 88, 461-468(2009).
  29. Srilatha, K., Lingaiah, N., Prabhavathi Devi, B. L. A., Prasad, R. B. N., Venkateswar, S. and Sai Prasad, P. S., "Esterification of Free Fatty Acids for Biodiesel Production Over Heteropoly Tungstate Supported on Niobia Catalysts," Appl. Catal. A: General, 365, 28-33(2009). https://doi.org/10.1016/j.apcata.2009.05.025
  30. Lopez, D. E., Suwannakarn, K., Druce, D. A. and Goodwin Jr, J. G., "Esterification and Transesterification on Tunstated Zirconia: Effect of Calcination Remperature," J. Catal., 247, 43-50(2007). https://doi.org/10.1016/j.jcat.2007.01.003
  31. Ramu, S., Lingaiah, N., Prabhavathi Devi, B. L. A., Prasad, R. B. N., Suryanarayana, I. and Sai Prasad, P. S., "Esterification of Palmitic Acid with Methanol Over Tungsten Oxide Supported on Zirconia Solid Acid Catalysts: Effect of Method of Preparation of the Catalyst on Its Structural Stability and Reactivity," Appl. Catal. A: General, 276, 163-168(2004). https://doi.org/10.1016/j.apcata.2004.08.002
  32. Zheng, S., Kates, M., Dubé, M. A. and McLean, D. D., "Acidcatalyzed Production of Biodiesel from Waste Frying Oil," Biomass Bioenergy, 30, 267-272(2006). https://doi.org/10.1016/j.biombioe.2005.10.004
  33. Kim, H. J., Kang, B. S., Kim, M. J., Kim, D. K., Lee, J. S. and Lee, K. Y., "Development of Catalyst System for Esterification of Free Fatty Acid Containedused Vegetable Oil," Stud. Surf. Sci. Catal., 153, 201-204(2004). https://doi.org/10.1016/S0167-2991(04)80248-9
  34. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Heterogeneous Esterification of Oil with High Amount of Free Fatty Acids," Fuel, 86, 906-910(2007). https://doi.org/10.1016/j.fuel.2006.09.006
  35. Caetano, C. S., Guerreiro, L., Fonseca, I. M., Ramos, A. M., Vital, J. and Castanheiro, J. E., "Esterification of Fatty Acids to Biofuel Over Polymers with Sulfonic Acid Groups," Appl. Catal. A: General, 359, 41-46(2009). https://doi.org/10.1016/j.apcata.2009.02.028
  36. Russbueldt, B. M. E. and Hoelderich, W. F., "New Sulfonic Acid Ion-exchange Resins for the Preesterification of Different Oils and Fats with High Content of Free Fatty Acids," Appl. Catal. A: General, 362, 47-57(2009). https://doi.org/10.1016/j.apcata.2009.04.019
  37. Park, J. Y., Kim, D. K. and Lee, J. S., "Esterification of Free Fatty Acids Using Water Tolerable Amberlyst as a Heterogeneous Catalyst," Bioresour. Technol., 101, S62-S65(2010). https://doi.org/10.1016/j.biortech.2009.03.035
  38. Kim, Y. J., Kim, D. K., Rhee, Y. W., Park, S. C. and Lee, J. S., "A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst 15," Korean Chem. Eng. Res., 41, 621-626(2005).
  39. Sreeprasanth, P. S., Srivastava, R., Srinivas, D. and Ratnasamy, P., "Hydrophobic, Solid Acid Catalysts for Production of Biofuels and Lubricants," Appl. Catal. A: General, 314, 148-159(2006). https://doi.org/10.1016/j.apcata.2006.08.012
  40. Yan, S., Salley, S. O. and Ng, K. Y. S., "Simultaneous Transesterification and Esterification of Unrefined or Waste Oils Over $ZnO-La_2O_3$ Catalysts," Appl. Catal. A: General, 353, 203-212(2009). https://doi.org/10.1016/j.apcata.2008.10.053
  41. Boocock, D. G. B., Konar, S. K., Mao, V. and Sidi, H., "Fast One-phase Oil-rich Processes for the Preparation of Vegetable Oil Methyl Esters," Biomass Bioenergy, 11, 43-50(1996). https://doi.org/10.1016/0961-9534(95)00111-5
  42. Yang, Z. and Xie, W., "Soybean Oil Transesterification Over Zinc Oxide Modified with Alkali Earth Metals," Fuel Process. Technol., 88, 631-638(2007). https://doi.org/10.1016/j.fuproc.2007.02.006
  43. Park, J. Y., Kim, D. K. and Lee, J. S., "Fast Biodiesel Production with One-phase Reaction," Appl. Biochem. Biotechnol. 154, 67-72(2009). https://doi.org/10.1007/s12010-008-8421-y
  44. Lou, W. Y., Zong, M. H. and Duan, Z. Q., "Efficient Production of Biodiesel from High Free Fatty Acid-containing Waste Oils Using Various Carbohydrate-derived Solid Acid Catalysts," Bioresour. Technol., 99, 8752-8758(2008). https://doi.org/10.1016/j.biortech.2008.04.038
  45. Wei, Z., Xu, C. and Li, B., "Application of Waste Eggshell as Low-cost Solid Catalyst for Biodiesel Production," Bioresour. Technol., 100, 2883-2885(2009). https://doi.org/10.1016/j.biortech.2008.12.039
  46. Kotwal, M. S., Niphadkar, P. S., Deshpande, S. S., Bokade, V. V. and Joshi, P. N., "Transesterification of Sunflower Oil Catalyzed by Flyash-based Solid Catalysts," Fuel, 88, 1773-1778(2009). https://doi.org/10.1016/j.fuel.2009.04.004